Menu Close

a-n-number-series-a-1-5-d-3-a-2-2-a-1-2-a-4-2-a-3-2-a-6-2-a-5-2-a-10-2-a-9-2-




Question Number 207262 by hardmath last updated on 10/May/24
a_n  - number series  a_1  = 5  d = 3  a_2 ^2 −a_1 ^2  + a_4 ^2 −a_3 ^2  + a_6 ^2 −a_5 ^2  + ... + a_(10) ^2 −a_9 ^2  = ?
annumberseriesa1=5d=3a22a12+a42a32+a62a52++a102a92=?
Answered by A5T last updated on 10/May/24
(a_2 −a_1 )(a_2 +a_1 )=d×[2a_1 +d]  a_(2n) ^2 −a_(2n−1) ^2 =(a_(2n) −a_(2n−1) )(a_(2n) +a_(2n−1) )  =d×[a_1 +(2n−1)d+a_1 +(2n−2)d]  =d×[2a_1 +d(4n−3)]  Σ_(n=1) ^5 a_(2n) ^2 −a_(2n−1) ^2 =d[10a_1 +d(1+5+9+13+17)]  =3[50+3(45)]=555
(a2a1)(a2+a1)=d×[2a1+d]a2n2a2n12=(a2na2n1)(a2n+a2n1)=d×[a1+(2n1)d+a1+(2n2)d]=d×[2a1+d(4n3)]5n=1a2n2a2n12=d[10a1+d(1+5+9+13+17)]=3[50+3(45)]=555
Commented by hardmath last updated on 10/May/24
perfect dear professor thankyou
perfectdearprofessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *