Menu Close

find-the-transfer-function-of-the-state-model-of-the-system-given-by-x-determinant-0-1-1-0-0-1-1-2-3-x-determinant-0-0-1-0-0-1-




Question Number 207313 by Wuji last updated on 11/May/24
find the transfer function of the state  model of the system given by  x^• = determinant (((0          1       1)),((0          0        1)),((−1  −2   −3)))x+ determinant (((0   0)),((1   0)),((0   1)))  and  determinant ((y_1 ),(y_2 ))= determinant (((1  0   0)),((0   0  1)))x
$$\mathrm{find}\:\mathrm{the}\:\mathrm{transfer}\:\mathrm{function}\:\mathrm{of}\:\mathrm{the}\:\mathrm{state} \\ $$$$\mathrm{model}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system}\:\mathrm{given}\:\mathrm{by} \\ $$$$\overset{\bullet} {\mathrm{x}}=\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\\{−\mathrm{1}\:\:−\mathrm{2}\:\:\:−\mathrm{3}}\end{vmatrix}\mathrm{x}+\begin{vmatrix}{\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{1}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{and}\:\begin{vmatrix}{\mathrm{y}_{\mathrm{1}} }\\{\mathrm{y}_{\mathrm{2}} }\end{vmatrix}=\begin{vmatrix}{\mathrm{1}\:\:\mathrm{0}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\mathrm{0}\:\:\mathrm{1}}\end{vmatrix}\mathrm{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *