Menu Close

let-f-R-R-be-a-continuous-function-then-show-that-1-if-f-x-f-x-2-x-R-then-f-is-a-constant-function-2-if-f-x-f-2x-1-x-R-then-f-is-a-constant-function-




Question Number 207314 by universe last updated on 11/May/24
 let f:R→R be a continuous function then   show that  (1) if  f(x) = f(x^2 ) ∀ x ∈R then f  is a constant    function   (2) if  f(x) = f(2x+1) ∀x∈R then f  is a     constant function
letf:RRbeacontinuousfunctionthenshowthat(1)iff(x)=f(x2)xRthenfisaconstantfunction(2)iff(x)=f(2x+1)xRthenfisaconstantfunction
Answered by Berbere last updated on 11/May/24
f(x)=f(x^2 )⇒f is continus  f(−x)=f(x)⇒  we show njst f∣[0,∞[ is constante  if x∈[0,1]   let p∈[0,1[ suchat that px∈[0,p[  ⇒f(px)=f(p^2 x^2 )=(p^2^n  x^2^n  );∀n∈N  f(px)=lim_(n→∞) f(p^2^n  x^2^n  )=f(0)  f(1−(1/n))=lim_(n→∞) f(1−(1/n))=0  =lim_(n→∞) f(0)=f(0)  if x>1  f((√x))=f(x)⇒∀n∈N^∗   f(x^(1/2^n ) )=f(x)⇒lim_(n→∞) f(x^(1/2^n ) )=f(lim_(n→∞) e^((1/2^n )ln(x)) )=f(1)=f(0)  ⇒∀x∈R f(x)=f(0)   2)  f(x)=f(2x+1)  x→^h 2x+1  hoh....h n times  =h^n (x)=a_n x+b_n   h^0 (x)=x=f(x)=2x+1  h^(n+1) =2a_n x+2b_n +1=a_(n+1) x+b_(n+1)   b_(n+1) =2b_n +1;a_(n+1) =2a_n ⇒a_n =2^n   b_n =2^n −1  h^n (x)=2^n x+2^n −1  ⇒y=2^n x+2^n −1;   x_n =(y/2^n )−1+(1/2^n )⇒f(x)=f(y) ;∀n y is fixed  f(y)=lim_(n→∞) f(((y+1)/(2^n  ))−1)=f(−1)   f is constante
f(x)=f(x2)fiscontinusf(x)=f(x)weshownjstf[0,[isconstanteifx[0,1]letp[0,1[suchatthatpx[0,p[f(px)=f(p2x2)=(p2nx2n);nNf(px)=limnf(p2nx2n)=f(0)f(11n)=limnf(11n)=0=limnf(0)=f(0)ifx>1f(x)=f(x)nNf(x12n)=f(x)limnf(x12n)=f(limne12nln(x))=f(1)=f(0)xRf(x)=f(0)2)f(x)=f(2x+1)xh2x+1hoh.hntimes=hn(x)=anx+bnh0(x)=x=f(x)=2x+1hn+1=2anx+2bn+1=an+1x+bn+1bn+1=2bn+1;an+1=2anan=2nbn=2n1hn(x)=2nx+2n1y=2nx+2n1;xn=y2n1+12nf(x)=f(y);nyisfixedf(y)=limnf(y+12n1)=f(1)fisconstante
Commented by universe last updated on 11/May/24
thank u sir
thankusir
Commented by Berbere last updated on 11/May/24
Withe Pleasur
WithePleasur

Leave a Reply

Your email address will not be published. Required fields are marked *