Menu Close

Let-cardE-n-and-the-set-of-parts-S-A-B-P-E-P-E-A-B-Show-that-cardS-3-n-




Question Number 207387 by sniper237 last updated on 13/May/24
Let  cardE=n , and  the set of parts  S={(A,B)∈P(E)×P(E) /  A∩B=∅}  Show that  cardS= 3^n
LetcardE=n,andthesetofpartsS={(A,B)P(E)×P(E)/AB=}ShowthatcardS=3n
Answered by Berbere last updated on 13/May/24
if card(A)=k;E=A∪A^−   the number of subset of card=k  in E is  ((n),(k) )  we havd to shoose B in (A^− );card(A^− )=n−k  B∈P(A^− ) card (P(A^− ))=2^(n−k)   (A,B) can bee chosed by Σ_(k=0) ^n  ((n),(k) )2^(n−k) =Σ_(k=0) ^n  ((n),(k) )1^k .2^(n−k) =(1+2)^n =3^n
ifcard(A)=k;E=AAthenumberofsubsetofcard=kinEis(nk)wehavdtoshooseBin(A);card(A)=nkBP(A)card(P(A))=2nk(A,B)canbeechosedbynk=0(nk)2nk=nk=0(nk)1k.2nk=(1+2)n=3n

Leave a Reply

Your email address will not be published. Required fields are marked *