Menu Close

Let-cardE-n-and-the-set-of-parts-S-A-B-P-E-P-E-A-B-Show-that-cardS-3-n-




Question Number 207387 by sniper237 last updated on 13/May/24
Let  cardE=n , and  the set of parts  S={(A,B)∈P(E)×P(E) /  A∩B=∅}  Show that  cardS= 3^n
$${Let}\:\:{cardE}={n}\:,\:{and}\:\:{the}\:{set}\:{of}\:{parts} \\ $$$${S}=\left\{\left({A},{B}\right)\in{P}\left({E}\right)×{P}\left({E}\right)\:/\:\:{A}\cap{B}=\varnothing\right\} \\ $$$${Show}\:{that}\:\:{cardS}=\:\mathrm{3}^{{n}} \\ $$
Answered by Berbere last updated on 13/May/24
if card(A)=k;E=A∪A^−   the number of subset of card=k  in E is  ((n),(k) )  we havd to shoose B in (A^− );card(A^− )=n−k  B∈P(A^− ) card (P(A^− ))=2^(n−k)   (A,B) can bee chosed by Σ_(k=0) ^n  ((n),(k) )2^(n−k) =Σ_(k=0) ^n  ((n),(k) )1^k .2^(n−k) =(1+2)^n =3^n
$${if}\:{card}\left({A}\right)={k};{E}={A}\cup\overset{−} {{A}}\:\:{the}\:{number}\:{of}\:{subset}\:{of}\:{card}={k} \\ $$$${in}\:{E}\:{is}\:\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix} \\ $$$${we}\:{havd}\:{to}\:{shoose}\:{B}\:{in}\:\left(\overset{−} {{A}}\right);{card}\left(\overset{−} {{A}}\right)={n}−{k} \\ $$$${B}\in{P}\left(\overset{−} {{A}}\right)\:{card}\:\left({P}\left(\overset{−} {{A}}\right)\right)=\mathrm{2}^{{n}−{k}} \\ $$$$\left({A},{B}\right)\:{can}\:{bee}\:{chosed}\:{by}\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\mathrm{2}^{{n}−{k}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\mathrm{1}^{{k}} .\mathrm{2}^{{n}−{k}} =\left(\mathrm{1}+\mathrm{2}\right)^{{n}} =\mathrm{3}^{{n}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *