Menu Close

Relating-to-question-207407-x-3-12x-2-27x-17-0-Let-x-t-4-t-3-21t-37-0-The-Trigonometric-Solution-gives-these-x-1-4-2-7-cos-pi-2sin-1-37-7-98-6-x-2-4-2-7-sin-sin-1-37-7-




Question Number 207434 by Frix last updated on 22/May/24
Relating to question 207407  x^3 −12x^2 +27x−17=0  Let x=t+4  t^3 −21t−37=0  The Trigonometric Solution gives these:  x_1 =4−2(√7)cos ((π+2sin^(−1)  ((37(√7))/(98)))/6)  x_2 =4−2(√7)sin ((sin^(−1)  ((37(√7))/(98)))/3)  x_3 =4+2(√7)sin ((π+sin^(−1)  ((37(√7))/(98)))/3)  Prove these identities:  x_1 =2−((1+2sin (π/(18)))/(2cos  (π/9)))  x_2 =2+((1+2cos (π/9))/(2cos ((2π)/9)))  x_3 =((1+2(√3)sin ((2π)/9))/(2sin (π/(18))))
$$\mathrm{Relating}\:\mathrm{to}\:\mathrm{question}\:\mathrm{207407} \\ $$$${x}^{\mathrm{3}} −\mathrm{12}{x}^{\mathrm{2}} +\mathrm{27}{x}−\mathrm{17}=\mathrm{0} \\ $$$$\mathrm{Let}\:{x}={t}+\mathrm{4} \\ $$$${t}^{\mathrm{3}} −\mathrm{21}{t}−\mathrm{37}=\mathrm{0} \\ $$$$\mathrm{The}\:\mathrm{Trigonometric}\:\mathrm{Solution}\:\mathrm{gives}\:\mathrm{these}: \\ $$$${x}_{\mathrm{1}} =\mathrm{4}−\mathrm{2}\sqrt{\mathrm{7}}\mathrm{cos}\:\frac{\pi+\mathrm{2sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{6}} \\ $$$${x}_{\mathrm{2}} =\mathrm{4}−\mathrm{2}\sqrt{\mathrm{7}}\mathrm{sin}\:\frac{\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{3}} \\ $$$${x}_{\mathrm{3}} =\mathrm{4}+\mathrm{2}\sqrt{\mathrm{7}}\mathrm{sin}\:\frac{\pi+\mathrm{sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{3}} \\ $$$$\mathrm{Prove}\:\mathrm{these}\:\mathrm{identities}: \\ $$$${x}_{\mathrm{1}} =\mathrm{2}−\frac{\mathrm{1}+\mathrm{2sin}\:\frac{\pi}{\mathrm{18}}}{\mathrm{2cos}\:\:\frac{\pi}{\mathrm{9}}} \\ $$$${x}_{\mathrm{2}} =\mathrm{2}+\frac{\mathrm{1}+\mathrm{2cos}\:\frac{\pi}{\mathrm{9}}}{\mathrm{2cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}} \\ $$$${x}_{\mathrm{3}} =\frac{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}{\mathrm{2sin}\:\frac{\pi}{\mathrm{18}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *