Menu Close

Find-lim-x-2-x-2-x-1-x-2-




Question Number 207519 by hardmath last updated on 17/May/24
Find:   lim_(x→2^− )   (((x + 2)∙(x + 1))/(∣x + 2∣))  =  ?
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\:\frac{\left(\mathrm{x}\:+\:\mathrm{2}\right)\centerdot\left(\mathrm{x}\:+\:\mathrm{1}\right)}{\mid\mathrm{x}\:+\:\mathrm{2}\mid}\:\:=\:\:? \\ $$
Answered by Frix last updated on 17/May/24
f(x)=(((x+2)(x+1))/(∣x+2∣))= { ((−(x+1), x<−2)),(((x+1), −2<x)) :}  We approach 2 from the negative side but  for 0<x<2 we get  lim_(x→2^− )  (x+1) =3  The only discontinuity is at x=−2  lim_(x→−2^− )  f(x) =1 ≠ lim_(x→−2^+ )  f(x) =−1
$${f}\left({x}\right)=\frac{\left({x}+\mathrm{2}\right)\left({x}+\mathrm{1}\right)}{\mid{x}+\mathrm{2}\mid}=\begin{cases}{−\left({x}+\mathrm{1}\right),\:{x}<−\mathrm{2}}\\{\left({x}+\mathrm{1}\right),\:−\mathrm{2}<{x}}\end{cases} \\ $$$$\mathrm{We}\:\mathrm{approach}\:\mathrm{2}\:\mathrm{from}\:\mathrm{the}\:\mathrm{negative}\:\mathrm{side}\:\mathrm{but} \\ $$$$\mathrm{for}\:\mathrm{0}<{x}<\mathrm{2}\:\mathrm{we}\:\mathrm{get} \\ $$$$\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\left({x}+\mathrm{1}\right)\:=\mathrm{3} \\ $$$$\mathrm{The}\:\mathrm{only}\:\mathrm{discontinuity}\:\mathrm{is}\:\mathrm{at}\:{x}=−\mathrm{2} \\ $$$$\underset{{x}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:{f}\left({x}\right)\:=\mathrm{1}\:\neq\:\underset{{x}\rightarrow−\mathrm{2}^{+} } {\mathrm{lim}}\:{f}\left({x}\right)\:=−\mathrm{1} \\ $$
Commented by hardmath last updated on 18/May/24
answer: 3  professor?
$$\mathrm{answer}:\:\mathrm{3}\:\:\mathrm{professor}? \\ $$
Commented by Frix last updated on 18/May/24
Yes. x=2 makes no problem, you can just  insert f(2)=(((2+2)(2+1))/(∣2+2∣))=((4×3)/4)=3
$$\mathrm{Yes}.\:{x}=\mathrm{2}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{problem},\:\mathrm{you}\:\mathrm{can}\:\mathrm{just} \\ $$$$\mathrm{insert}\:{f}\left(\mathrm{2}\right)=\frac{\left(\mathrm{2}+\mathrm{2}\right)\left(\mathrm{2}+\mathrm{1}\right)}{\mid\mathrm{2}+\mathrm{2}\mid}=\frac{\mathrm{4}×\mathrm{3}}{\mathrm{4}}=\mathrm{3} \\ $$
Commented by hardmath last updated on 18/May/24
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *