Question Number 207493 by hardmath last updated on 17/May/24
$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{3}} \:=\:\:? \\ $$
Answered by A5T last updated on 17/May/24
$$\left(\frac{{n}+\mathrm{2}}{{n}−\mathrm{1}}\right)^{{n}+\mathrm{3}} =\left(\frac{{n}−\mathrm{1}+\mathrm{3}}{{n}−\mathrm{1}}\right)^{{n}+\mathrm{3}} =\left(\mathrm{1}+\frac{\mathrm{3}}{{n}−\mathrm{1}}\right)^{{n}+\mathrm{3}} \\ $$$$=\left[\left(\mathrm{1}+\frac{\mathrm{1}}{\frac{{n}−\mathrm{1}}{\mathrm{3}}}\right)\frac{{n}−\mathrm{1}}{\mathrm{3}}\right]^{\mathrm{3}} \left[\mathrm{1}+\frac{\mathrm{1}}{\frac{{n}−\mathrm{1}}{\mathrm{3}}}\right]^{\mathrm{4}} \\ $$$$\frac{{n}−\mathrm{1}}{\mathrm{3}}={p} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{{n}+\mathrm{2}}{{n}−\mathrm{1}}\right)^{{n}+\mathrm{3}} =\underset{{p}\rightarrow\infty} {{lim}}\left[\left(\mathrm{1}+\frac{\mathrm{1}}{{p}}\right)^{{p}} \right]^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{{p}}\right)^{\mathrm{4}} \\ $$$$={e}^{\mathrm{3}} ×\mathrm{1} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{{n}−\mathrm{1}}{{n}+\mathrm{2}}\right)^{{n}+\mathrm{3}} =\frac{\mathrm{1}}{{e}^{\mathrm{3}} } \\ $$
Commented by hardmath last updated on 17/May/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{professor} \\ $$
Answered by A5T last updated on 17/May/24
$$\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{{n}−\mathrm{1}}{{n}+\mathrm{2}}\right)^{{n}+\mathrm{3}} =\underset{{n}\rightarrow\infty} {{lim}}\left(\frac{{n}+\mathrm{2}−\mathrm{3}}{{n}+\mathrm{2}}\right)^{{n}+\mathrm{3}} \\ $$$$=\underset{{n}\rightarrow\infty} {{lim}}\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\frac{{n}+\mathrm{2}}{\mathrm{3}}}\right)^{\frac{{n}+\mathrm{2}}{\mathrm{3}}} \right]^{\mathrm{3}} \left(\mathrm{1}−\frac{\mathrm{1}}{\frac{{n}+\mathrm{2}}{\mathrm{3}}}\right)=\frac{\mathrm{1}}{{e}^{\mathrm{3}} }×\mathrm{1} \\ $$