Question Number 207565 by mathzup last updated on 18/May/24
$${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}^{\mathrm{2}} }{{tan}^{\mathrm{2}} {x}}{dx} \\ $$
Answered by sniper237 last updated on 19/May/24
$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{x}^{\mathrm{2}} \left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)}{{sin}^{\mathrm{2}} {x}}\:{dx}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx}−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$\overset{{PI}} {=}\left[−\frac{{x}^{\mathrm{2}} }{{tanx}}\right]_{\rightarrow\mathrm{0}} +\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{x}}{{tanx}}{dx}−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$\overset{{PI}} {=}\:\mathrm{2}\left[{xln}\left({sinx}\right)\right]_{\rightarrow\mathrm{0}} −\mathrm{2}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {ln}\left({sinx}\right){dx}−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$\overset{{t}={sinx}} {=}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\:−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$=−\mathrm{2}\partial_{{a}} \left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{a}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}\right)_{\mathrm{0}} −\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$\overset{{u}={t}^{\mathrm{2}} } {=}−\partial_{{a}} \left(\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{{a}−\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}\right)−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$=−\partial_{{a}} \left(\frac{\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)}\right)_{\mathrm{0}} −\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma'\left(\mathrm{1}/\mathrm{2}\right)\Gamma\left(\mathrm{1}/\mathrm{2}\right)−\Gamma'\left(\mathrm{1}\right)\Gamma\left(\mathrm{1}/\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{1}^{\mathrm{2}} }−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$$=\frac{\mathrm{3}\pi\gamma−\mathrm{6}\sqrt{\pi}\:\Gamma'\left(\mathrm{1}/\mathrm{2}\right)−\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$
Answered by Berbere last updated on 19/May/24
$${x}\rightarrow\frac{\pi}{\mathrm{2}}−{x} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \left({x}\right){dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \left({x}\right)\right)\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} {dx} \\ $$$$−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} ={A}−{B} \\ $$$${B}=−\frac{\mathrm{1}}{\mathrm{3}}\left[\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{3}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$$${A}=\left[\mathrm{tan}\:\left({x}\right)\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} \right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}\:\left({x}\right)\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}\:\left({x}\right)\left(\frac{\pi}{\mathrm{2}}−{x}\right){dx}=\left[\mathrm{2}{ln}\left({cos}\left({x}\right)\right)\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\left({x}\right)\right){dx}=−\mathrm{2}.−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)=\pi{ln}\left(\mathrm{2}\right) \\ $$$$\pi{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$