find-0-pi-2-x-2-tan-2-x-dx- Tinku Tara May 18, 2024 Integration 0 Comments FacebookTweetPin Question Number 207565 by mathzup last updated on 18/May/24 find∫0π2x2tan2xdx Answered by sniper237 last updated on 19/May/24 ∫0π/2x2(1−sin2x)sin2xdx=∫0π/2x2sin2xdx−π324=PI[−x2tanx]→0+2∫0π/2xtanxdx−π324=PI2[xln(sinx)]→0−2∫0π/2ln(sinx)dx−π324=t=sinx−2∫01lnt1−t2dt−π324=−2∂a(∫01ta1−t2dt)0−π324=u=t2−∂a(∫01ua−12(1−u)12−1du)−π324=−∂a(Γ(a+12)Γ(12)Γ(a2+1))0−π324=−12Γ′(1/2)Γ(1/2)−Γ′(1)Γ(1/2)212−π324=3πγ−6πΓ′(1/2)−π324 Answered by Berbere last updated on 19/May/24 x→π2−x=∫0π2(π2−x)2tan2(x)dx=∫0π2(1+tan2(x))(π2−x)2dx−∫0π2(π2−x)2=A−BB=−13[(π2−x)3]0π2=π324A=[tan(x)(π2−x)2]0π2−2∫0π2tan(x)(π2−x)=−2∫0π2tan(x)(π2−x)dx=[2ln(cos(x))(π2−x)]0π2−2∫0π2ln(cos(x))dx=−2.−π2ln(2)=πln(2)πln(2)−π324 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-207533Next Next post: The-real-roots-of-the-equation-x-2-6x-c-0-differ-by-2n-where-n-is-a-real-non-zero-Show-that-n-2-9-c-Given-that-the-roots-also-have-opposite-signs-find-the-set-of-possible-values-of-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.