Menu Close

find-0-pi-2-x-2-tan-2-x-dx-




Question Number 207565 by mathzup last updated on 18/May/24
find ∫_0 ^(π/2)  (x^2 /(tan^2 x))dx
find0π2x2tan2xdx
Answered by sniper237 last updated on 19/May/24
∫_0 ^(π/2) ((x^2 (1−sin^2 x))/(sin^2 x)) dx=∫_0 ^(π/2) (x^2 /(sin^2 x))dx−(π^3 /(24))  =^(PI) [−(x^2 /(tanx))]_(→0) +2∫_0 ^(π/2) (x/(tanx))dx−(π^3 /(24))  =^(PI)  2[xln(sinx)]_(→0) −2∫_0 ^(π/2) ln(sinx)dx−(π^3 /(24))  =^(t=sinx) −2∫_0 ^1 ((lnt)/( (√(1−t^2 ))))dt −(π^3 /(24))  =−2∂_a (∫_0 ^1 (t^a /( (√(1−t^2 ))))dt)_0 −(π^3 /(24))  =^(u=t^2 ) −∂_a (∫_0 ^1 u^((a−1)/2) (1−u)^((1/2)−1) du)−(π^3 /(24))  =−∂_a (((Γ(((a+1)/2))Γ((1/2)))/(Γ((a/2)+1))))_0 −(π^3 /(24))  = −(1/2) ((Γ′(1/2)Γ(1/2)−Γ′(1)Γ(1/2)^2 )/1^2 )−(π^3 /(24))  =((3πγ−6(√π) Γ′(1/2)−π^3 )/(24))
0π/2x2(1sin2x)sin2xdx=0π/2x2sin2xdxπ324=PI[x2tanx]0+20π/2xtanxdxπ324=PI2[xln(sinx)]020π/2ln(sinx)dxπ324=t=sinx201lnt1t2dtπ324=2a(01ta1t2dt)0π324=u=t2a(01ua12(1u)121du)π324=a(Γ(a+12)Γ(12)Γ(a2+1))0π324=12Γ(1/2)Γ(1/2)Γ(1)Γ(1/2)212π324=3πγ6πΓ(1/2)π324
Answered by Berbere last updated on 19/May/24
x→(π/2)−x  =∫_0 ^(π/2) ((π/2)−x)^2 tan^2 (x)dx=∫_0 ^(π/2) (1+tan^2 (x))((π/2)−x)^2 dx  −∫_0 ^(π/2) ((π/2)−x)^2 =A−B  B=−(1/3)[((π/2)−x)^3 ]_0 ^(π/2) =(π^3 /(24))  A=[tan (x)((π/2)−x)^2 ]_0 ^(π/2) −2∫_0 ^(π/2) tan (x)((π/2)−x)  =−2∫_0 ^(π/2) tan (x)((π/2)−x)dx=[2ln(cos(x))((π/2)−x)]_0 ^(π/2)   −2∫_0 ^(π/2) ln(cos(x))dx=−2.−(π/2)ln(2)=πln(2)  πln(2)−(π^3 /(24))
xπ2x=0π2(π2x)2tan2(x)dx=0π2(1+tan2(x))(π2x)2dx0π2(π2x)2=ABB=13[(π2x)3]0π2=π324A=[tan(x)(π2x)2]0π220π2tan(x)(π2x)=20π2tan(x)(π2x)dx=[2ln(cos(x))(π2x)]0π220π2ln(cos(x))dx=2.π2ln(2)=πln(2)πln(2)π324

Leave a Reply

Your email address will not be published. Required fields are marked *