Question Number 207533 by mr W last updated on 18/May/24
Commented by mr W last updated on 18/May/24
$${find}\:{the}\:{radius}\:{of}\:{circumcircle} \\ $$
Answered by mr W last updated on 20/May/24
$${OA}={p}={R}−{a} \\ $$$${OB}={q}={R}−{b} \\ $$$${OC}={r}={R}−{c} \\ $$$${X}={q}^{\mathrm{2}} +{r}^{\mathrm{2}} −{u}^{\mathrm{2}} =\left({R}−{b}\right)^{\mathrm{2}} +\left({R}−{c}\right)^{\mathrm{2}} −{u}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}\left({b}+{c}\right){R}+{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{u}^{\mathrm{2}} \\ $$$${Y}={r}^{\mathrm{2}} +{p}^{\mathrm{2}} −{v}^{\mathrm{2}} =\left({R}−{c}\right)^{\mathrm{2}} +\left({R}−{a}\right)^{\mathrm{2}} −{v}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}\left({c}+{a}\right){R}+{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{v}^{\mathrm{2}} \\ $$$${Z}={p}^{\mathrm{2}} +{q}^{\mathrm{2}} −{w}^{\mathrm{2}} =\left({R}−{a}\right)^{\mathrm{2}} +\left({R}−{b}\right)^{\mathrm{2}} −{w}^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}\left({a}+{b}\right){R}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{w}^{\mathrm{2}} \\ $$$${volume}\:{of}\:{tetrahedron}\:{O}−{ABC} \\ $$$${should}\:{be}\:{zero}. \\ $$$${V}=\frac{\sqrt{\mathrm{4}{p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} +{XYZ}−{p}^{\mathrm{2}} {X}^{\mathrm{2}} −{q}^{\mathrm{2}} {Y}^{\mathrm{2}} −{r}^{\mathrm{2}} {Z}^{\mathrm{2}} }}{\mathrm{12}}=\mathrm{0} \\ $$$$\mathrm{4}{p}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} +{XYZ}−{p}^{\mathrm{2}} {X}^{\mathrm{2}} −{q}^{\mathrm{2}} {Y}^{\mathrm{2}} −{r}^{\mathrm{2}} {Z}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}\left({R}−{a}\right)^{\mathrm{2}} \left({R}−{b}\right)^{\mathrm{2}} \left({R}−{c}\right)^{\mathrm{2}} +{XYZ}−\left({R}−{a}\right)^{\mathrm{2}} {X}^{\mathrm{2}} −\left({R}−{b}\right)^{\mathrm{2}} {Y}^{\mathrm{2}} −\left({R}−{c}\right)^{\mathrm{2}} {Z}^{\mathrm{2}} =\mathrm{0} \\ $$$${after}\:{expansion}\:{we}\:{get}\:{a}\:{quadratic} \\ $$$${equation}\:{for}\:{R}: \\ $$$$\left\{−\left({u}^{\mathrm{4}} +{v}^{\mathrm{4}} +{w}^{\mathrm{4}} \right)+\mathrm{2}\left({u}^{\mathrm{2}} {v}^{\mathrm{2}} +{v}^{\mathrm{2}} {w}^{\mathrm{2}} +{w}^{\mathrm{2}} {u}^{\mathrm{2}} \right)+\mathrm{4}\left[{a}\left({b}+{c}\right)−{bc}−{a}^{\mathrm{2}} \right]{u}^{\mathrm{2}} +\mathrm{4}\left[{b}\left({c}+{a}\right)−{ca}−{b}^{\mathrm{2}} \right]{v}^{\mathrm{2}} +\mathrm{4}\left[{c}\left({a}+{b}\right)−{ab}−{c}^{\mathrm{2}} \right]{w}^{\mathrm{2}} \right\}{R}^{\mathrm{2}} \\ $$$$+\mathrm{2}\left\{{au}^{\mathrm{4}} +{bv}^{\mathrm{4}} +{cw}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{3}} {u}^{\mathrm{2}} +{b}^{\mathrm{3}} {v}^{\mathrm{2}} +{c}^{\mathrm{3}} {w}^{\mathrm{2}} \right)−\left({a}+{b}\right)\left({u}^{\mathrm{2}} {v}^{\mathrm{2}} +{c}^{\mathrm{2}} {w}^{\mathrm{2}} \right)−\left({b}+{c}\right)\left({v}^{\mathrm{2}} {w}^{\mathrm{2}} +{a}^{\mathrm{2}} {u}^{\mathrm{2}} \right)−\left({c}+{a}\right)\left({w}^{\mathrm{2}} {u}^{\mathrm{2}} +{b}^{\mathrm{2}} {v}^{\mathrm{2}} \right)+\left[{bc}\left({b}+{c}\right)−{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\right]{u}^{\mathrm{2}} +\left[{ca}\left({c}+{a}\right)−{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\right]{v}^{\mathrm{2}} +\left[{ab}\left({a}+{b}\right)−{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\right]{w}^{\mathrm{2}} \right\}{R} \\ $$$$−\left\{{a}^{\mathrm{2}} {u}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{u}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} {v}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{v}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} {w}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{w}^{\mathrm{2}} \right)−\left[{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} {c}^{\mathrm{2}} \right]{u}^{\mathrm{2}} −\left[{b}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right]{v}^{\mathrm{2}} −\left[{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right]{w}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){u}^{\mathrm{2}} {v}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){v}^{\mathrm{2}} {w}^{\mathrm{2}} −\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){w}^{\mathrm{2}} {u}^{\mathrm{2}} +{u}^{\mathrm{2}} {v}^{\mathrm{2}} {w}^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$${with} \\ $$$${A}=−\left({u}^{\mathrm{4}} +{v}^{\mathrm{4}} +{w}^{\mathrm{4}} \right)+\mathrm{2}\left({u}^{\mathrm{2}} {v}^{\mathrm{2}} +{v}^{\mathrm{2}} {w}^{\mathrm{2}} +{w}^{\mathrm{2}} {u}^{\mathrm{2}} \right)+\mathrm{4}\left[{a}\left({b}+{c}\right)−{bc}−{a}^{\mathrm{2}} \right]{u}^{\mathrm{2}} +\mathrm{4}\left[{b}\left({c}+{a}\right)−{ca}−{b}^{\mathrm{2}} \right]{v}^{\mathrm{2}} +\mathrm{4}\left[{c}\left({a}+{b}\right)−{ab}−{c}^{\mathrm{2}} \right]{w}^{\mathrm{2}} \\ $$$${B}={au}^{\mathrm{4}} +{bv}^{\mathrm{4}} +{cw}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{3}} {u}^{\mathrm{2}} +{b}^{\mathrm{3}} {v}^{\mathrm{2}} +{c}^{\mathrm{3}} {w}^{\mathrm{2}} \right)−\left({a}+{b}\right)\left({u}^{\mathrm{2}} {v}^{\mathrm{2}} +{c}^{\mathrm{2}} {w}^{\mathrm{2}} \right)−\left({b}+{c}\right)\left({v}^{\mathrm{2}} {w}^{\mathrm{2}} +{a}^{\mathrm{2}} {u}^{\mathrm{2}} \right)−\left({c}+{a}\right)\left({w}^{\mathrm{2}} {u}^{\mathrm{2}} +{b}^{\mathrm{2}} {v}^{\mathrm{2}} \right)+\left[{bc}\left({b}+{c}\right)−{a}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\right]{u}^{\mathrm{2}} +\left[{ca}\left({c}+{a}\right)−{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)\right]{v}^{\mathrm{2}} +\left[{ab}\left({a}+{b}\right)−{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\right]{w}^{\mathrm{2}} \\ $$$${C}={a}^{\mathrm{2}} {u}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{u}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} {v}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{v}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} {w}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{w}^{\mathrm{2}} \right)−\left[{a}^{\mathrm{2}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{b}^{\mathrm{2}} {c}^{\mathrm{2}} \right]{u}^{\mathrm{2}} −\left[{b}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)−{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right]{v}^{\mathrm{2}} −\left[{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right]{w}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){u}^{\mathrm{2}} {v}^{\mathrm{2}} −\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){v}^{\mathrm{2}} {w}^{\mathrm{2}} −\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right){w}^{\mathrm{2}} {u}^{\mathrm{2}} +{u}^{\mathrm{2}} {v}^{\mathrm{2}} {w}^{\mathrm{2}} \\ $$$$\Rightarrow{AR}^{\mathrm{2}} +\mathrm{2}{BR}−{C}=\mathrm{0} \\ $$$$\Rightarrow{R}=\frac{−{B}\pm\sqrt{{B}^{\mathrm{2}} +{AC}}}{{A}} \\ $$$$ \\ $$$${example}: \\ $$$${u}=\mathrm{7},\:{v}=\mathrm{6},\:{w}=\mathrm{8} \\ $$$${a}=\mathrm{3},\:{b}=\mathrm{2},\:{c}=\mathrm{1} \\ $$$${A}=−\left(\mathrm{7}^{\mathrm{4}} +\mathrm{6}^{\mathrm{4}} +\mathrm{8}^{\mathrm{4}} \right)+\mathrm{2}\left(\mathrm{7}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} \mathrm{7}^{\mathrm{2}} \right)+\mathrm{4}\left[\mathrm{3}\left(\mathrm{2}+\mathrm{1}\right)−\mathrm{2}×\mathrm{1}−\mathrm{3}^{\mathrm{2}} \right]\mathrm{7}^{\mathrm{2}} +\mathrm{4}\left[\mathrm{2}\left(\mathrm{1}+\mathrm{3}\right)−\mathrm{1}×\mathrm{3}−\mathrm{2}^{\mathrm{2}} \right]\mathrm{6}^{\mathrm{2}} +\mathrm{4}\left[\mathrm{1}\left(\mathrm{3}+\mathrm{2}\right)−\mathrm{3}×\mathrm{2}−\mathrm{1}^{\mathrm{2}} \right]\mathrm{8}^{\mathrm{2}} =\mathrm{5855} \\ $$$${B}=\mathrm{3}×\mathrm{7}^{\mathrm{4}} +\mathrm{2}×\mathrm{6}^{\mathrm{4}} +\mathrm{1}×\mathrm{8}^{\mathrm{4}} +\mathrm{2}\left(\mathrm{3}^{\mathrm{3}} \mathrm{7}^{\mathrm{2}} +\mathrm{2}^{\mathrm{3}} \mathrm{6}^{\mathrm{2}} +\mathrm{1}^{\mathrm{3}} \mathrm{8}^{\mathrm{2}} \right)−\left(\mathrm{3}+\mathrm{2}\right)\left(\mathrm{7}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} \right)−\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{6}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \mathrm{7}^{\mathrm{2}} \right)−\left(\mathrm{1}+\mathrm{3}\right)\left(\mathrm{8}^{\mathrm{2}} \mathrm{7}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} \right)+\left[\mathrm{2}×\mathrm{1}\left(\mathrm{2}+\mathrm{1}\right)−\mathrm{3}\left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)\right]\mathrm{7}^{\mathrm{2}} +\left[\mathrm{1}×\mathrm{3}\left(\mathrm{1}+\mathrm{3}\right)−\mathrm{2}\left(\mathrm{1}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\right]\mathrm{6}^{\mathrm{2}} +\left[\mathrm{3}×\mathrm{2}\left(\mathrm{3}+\mathrm{2}\right)−\mathrm{1}\left(\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)\right]\mathrm{8}^{\mathrm{2}} =−\mathrm{12895} \\ $$$${C}=\mathrm{3}^{\mathrm{2}} \mathrm{7}^{\mathrm{2}} \left(\mathrm{3}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} \right)+\mathrm{2}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} \left(\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} \right)+\mathrm{1}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} \left(\mathrm{1}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} \right)−\left[\mathrm{3}^{\mathrm{2}} \left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)−\mathrm{2}^{\mathrm{2}} \mathrm{1}^{\mathrm{2}} \right]\mathrm{7}^{\mathrm{2}} −\left[\mathrm{2}^{\mathrm{2}} \left(\mathrm{1}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)−\mathrm{1}^{\mathrm{2}} \mathrm{3}^{\mathrm{2}} \right]\mathrm{6}^{\mathrm{2}} −\left[\mathrm{1}^{\mathrm{2}} \left(\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)−\mathrm{3}^{\mathrm{2}} \mathrm{2}^{\mathrm{2}} \right]\mathrm{8}^{\mathrm{2}} −\left(\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \right)\mathrm{7}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} −\left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} \right)\mathrm{6}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} −\left(\mathrm{1}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\mathrm{8}^{\mathrm{2}} \mathrm{7}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} \mathrm{6}^{\mathrm{2}} \mathrm{8}^{\mathrm{2}} =\mathrm{80929} \\ $$$${R}=\frac{\mathrm{12895}\pm\sqrt{\mathrm{12895}^{\mathrm{2}} +\mathrm{5855}×\mathrm{80929}}}{\mathrm{5855}} \\ $$$$\:\:\:\:=\frac{\mathrm{2579}}{\mathrm{1171}}\pm\frac{\mathrm{3024}\sqrt{\mathrm{70}}}{\mathrm{5855}} \\ $$$$\:\:\:\:\approx\mathrm{6}.\mathrm{523586}\:/\:−\mathrm{2}.\mathrm{118804} \\ $$
Commented by mr W last updated on 19/May/24
Answered by ajfour last updated on 18/May/24
$${say}\:{A}\:{is}\:{origin}.\:{AO}\:\:{y}\:{axis}. \\ $$$${red}\:{circle}\:{x}^{\mathrm{2}} +\left({y}−{R}+{a}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${x}_{{B}} ^{\mathrm{2}} +{y}_{{B}} ^{\mathrm{2}} ={w}^{\mathrm{2}} \\ $$$${x}_{{C}} ^{\mathrm{2}} +{y}_{{C}} ^{\mathrm{2}} ={v}^{\mathrm{2}} \\ $$$${x}_{{B}} ^{\mathrm{2}} +\left({y}_{{B}} −{R}+{a}\right)^{\mathrm{2}} =\left({R}−{b}\right)^{\mathrm{2}} \\ $$$${x}_{{C}} ^{\mathrm{2}} +\left({y}_{{C}} −{R}+{a}\right)^{\mathrm{2}} =\left({R}−{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{w}^{\mathrm{2}} −\mathrm{2}\left({R}−{a}\right){y}_{{B}} =\left({R}−{b}\right)^{\mathrm{2}} \\ $$$$\&\:{v}^{\mathrm{2}} −\mathrm{2}\left({R}−{a}\right){y}_{{c}} =\left({R}−{c}\right)^{\mathrm{2}} \\ $$$${x}_{{B}} =\sqrt{{w}^{\mathrm{2}} −{y}_{{B}} ^{\mathrm{2}} } \\ $$$${x}_{{C}} =−\sqrt{{v}^{\mathrm{2}} −{y}_{{C}} ^{\mathrm{2}} } \\ $$$$\left({x}_{{B}} −{x}_{{C}} \right)^{\mathrm{2}} +\left({y}_{{B}} −{y}_{{C}} \right)^{\mathrm{2}} ={u}^{\mathrm{2}} \\ $$$$\bigstar \\ $$
Commented by mr W last updated on 18/May/24
$${welcome}\:{back}\:{sir}! \\ $$
Commented by ajfour last updated on 18/May/24
$${thanks},\:{but}\:{could}\:{u}\:{follow}\:{my}\:{solution} \\ $$$${sir}.. \\ $$
Commented by mr W last updated on 19/May/24
$${your}\:{path}\:{is}\:{right},\:{thanks}\:{sir}! \\ $$
Commented by ajfour last updated on 18/May/24
$${can}\:{this}\:{do}? \\ $$$$\Sigma\mathrm{cos}^{−\mathrm{1}} \frac{\left({R}−{b}\right)^{\mathrm{2}} +\left({R}−{c}\right)^{\mathrm{2}} −{u}^{\mathrm{2}} }{\mathrm{2}\left({R}−{b}\right)\left({R}−{c}\right)}=\mathrm{2}\pi \\ $$
Commented by mr W last updated on 19/May/24
$${yes},\:{this}\:{works}\:{either}.\:{but}\:{this} \\ $$$${equation}\:{is}\:{not}\:{polynomial}. \\ $$$${the}\:{distances}\:{from}\:{a}\:{point}\:{to}\:{the} \\ $$$${vertices}\:{of}\:{a}\:{triangle}\:{fulfills} \\ $$$${a}\:{polynomial}\:{equation}. \\ $$
Commented by mr W last updated on 18/May/24
Commented by mr W last updated on 19/May/24
$${the}\:{final}\:{equation}\:{can}\:{be}\:{simplied}\:{to} \\ $$$${a}\:{quadratic}\:{equation},\:{so}\:{we}\:{can}\:{get} \\ $$$${the}\:{exact}\:{solution}.\:{see}\:{above}. \\ $$