Menu Close

The-real-roots-of-the-equation-x-2-6x-c-0-differ-by-2n-where-n-is-a-real-non-zero-Show-that-n-2-9-c-Given-that-the-roots-also-have-opposite-signs-find-the-set-of-possible-values-of-n-




Question Number 207546 by pete last updated on 18/May/24
The real roots of the equation x^2 +6x+c=0  differ by 2n, where n is a real non−zero.  Show that n^2 =9−c  Given that the roots also have opposite  signs, find the set of possible values of n
Therealrootsoftheequationx2+6x+c=0differby2n,wherenisarealnonzero.Showthatn2=9cGiventhattherootsalsohaveoppositesigns,findthesetofpossiblevaluesofn
Answered by A5T last updated on 18/May/24
x_1 +x_2 =−6; x_1 x_2 =c; ∣x_1 −x_2 ∣=2n  ⇒4n^2 =(x_1 −x_2 )^2 =(x_1 +x_2 )^2 −4x_1 x_2   ⇒4n^2 =36−4c⇒n^2 =9−c  x_(1,2) =((−6+_− (√(36−4c)))/2)=−3+_− (√(9−c))=−3+_− ∣n∣  when[−3+∣n∣≥0 and −3−∣n∣≤0  ⇒∣n∣≥3 and ∣n∣≥−3⇒∣n∣≥3⇒n≥3 or n≤−3..(i)  when −3+∣n∣≤0 and −3−∣n∣≥0  ⇒∣n∣≤3 and ∣n∣≤−3⇒∅...(ii)  ⇒n≥3 or n≤−3
x1+x2=6;x1x2=c;x1x2∣=2n4n2=(x1x2)2=(x1+x2)24x1x24n2=364cn2=9cx1,2=6+364c2=3+9c=3+nwhen[3+n∣⩾0and3n∣⩽0⇒∣n∣⩾3andn∣⩾3⇒∣n∣⩾3n3orn3..(i)when3+n∣⩽0and3n∣⩾0⇒∣n∣⩽3andn∣⩽3(ii)n3orn3
Commented by pete last updated on 18/May/24
Thank you sir
Thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *