Menu Close

z-z-1-3-i-find-




Question Number 207563 by hardmath last updated on 18/May/24
z  +  ∣z∣  =  1  +  (√3) i  find:   𝛟 = ?
z+z=1+3ifind:φ=?
Answered by Frix last updated on 18/May/24
z+∣z∣=1+(√3)i  ∣z∣=1+(√3)i−z  ∣z∣∈R ⇒ z=a+(√3)i  ∣a+(√3)i∣=1−a  (√(a^2 +3))=1−a ⇒ a=−1  z=−1+(√3)i=2e^(i((2π)/3))  ⇒ ϕ=((2π)/3)
z+z∣=1+3iz∣=1+3izz∣∈Rz=a+3ia+3i∣=1aa2+3=1aa=1z=1+3i=2ei2π3φ=2π3
Commented by hardmath last updated on 19/May/24
thank you professor
thankyouprofessor
Answered by A5T last updated on 18/May/24
z=a+bi⇒∣z∣=(√(a^2 +b^2 ))  z+∣z∣=(a+(√(a^2 +b^2 )))+bi=1+i(√3)⇒b=(√3)  a+(√(a^2 +b^2 ))=1⇒a+(√(a^2 +3))=1⇒a^2 +3=1+a^2 −2a  ⇒a=−1⇒z=−1+i(√3)  ⇒z=2e^(i((2π)/3))
z=a+bi⇒∣z∣=a2+b2z+z∣=(a+a2+b2)+bi=1+i3b=3a+a2+b2=1a+a2+3=1a2+3=1+a22aa=1z=1+i3z=2ei2π3

Leave a Reply

Your email address will not be published. Required fields are marked *