Menu Close

0-pi-ln-sinx-dx-piln2-0-1-ln-x-dx-ln-2pi-




Question Number 207582 by sniper237 last updated on 19/May/24
∫_0 ^π  ln(sinx)dx=−πln2  ∫_0 ^1 lnΓ(x)dx = ln(2π)
0πln(sinx)dx=πln201lnΓ(x)dx=ln(2π)
Answered by mathzup last updated on 21/May/24
I=∫_0 ^π ln(sinx)dx=∫_0 ^(π/2) ln(sinx)dx  +∫_(π/2) ^π ln(sinx)dx(→x=(π/2)+t)  =−(π/2)ln(2)+∫_0 ^(π/2) ln(cost)dt  =−(π/2)ln2−(π/2)ln2=−πln2
I=0πln(sinx)dx=0π2ln(sinx)dx+π2πln(sinx)dx(x=π2+t)=π2ln(2)+0π2ln(cost)dt=π2ln2π2ln2=πln2
Answered by mathzup last updated on 21/May/24
Γ(x).Γ(1−x)=(π/(sin(πx))) ⇒  ln(Γ(x))+ln(Γ(1−x))=lnπ−ln(sin(πx))  ⇒∫_0 ^1 ln(Γ(x))dx+∫_0 ^1 ln(Γ(1−x))dx  =ln(π)−∫_0 ^1 ln(sin(πx))dx(→πx=t)  =ln(π)−∫_0 ^π ln(sint)(dt/π)  =ln(π)−(1/π)(−πln2)  =ln(π)+ln(2)=ln(2π)  but ∫_0 ^1 ln(Γ(1−x))dx=_(1−x=t) ∫_1 ^0 ln(Γ(t))(−dt)  =∫_0 ^1 ln(Γ(x)dx ⇒  ∫_0 ^1 ln(Γ(x))dx=(1/2)ln(2π)  il ya erreur dans l enonce !...
Γ(x).Γ(1x)=πsin(πx)ln(Γ(x))+ln(Γ(1x))=lnπln(sin(πx))01ln(Γ(x))dx+01ln(Γ(1x))dx=ln(π)01ln(sin(πx))dx(πx=t)=ln(π)0πln(sint)dtπ=ln(π)1π(πln2)=ln(π)+ln(2)=ln(2π)but01ln(Γ(1x))dx=1x=t10ln(Γ(t))(dt)=01ln(Γ(x)dx01ln(Γ(x))dx=12ln(2π)ilyaerreurdanslenonce!

Leave a Reply

Your email address will not be published. Required fields are marked *