Menu Close

we-have-100-money-if-we-want-to-buy-100-Donkys-Horses-and-Camels-mixed-while-20-Donkys-cost-1-money-1-Horse-costs-1-money-and-1-Camel-costs-5-money-find-total-number-of-Donkys-Horses-and-Camels-




Question Number 207610 by Davidtim last updated on 20/May/24
we have 100 money if we want to buy 100 Donkys Horses  and Camels mixed while 20 Donkys  cost 1 money, 1 Horse costs 1 money and  1 Camel costs 5 money.  find total number of Donkys, Horses,  and Camels.
$${we}\:{have}\:\mathrm{100}\:{money}\:{if}\:{we}\:{want}\:{to}\:{buy}\:\mathrm{100}\:{Donkys}\:{Horses} \\ $$$${and}\:{Camels}\:{mixed}\:{while}\:\mathrm{20}\:{Donkys} \\ $$$${cost}\:\mathrm{1}\:{money},\:\mathrm{1}\:{Horse}\:{costs}\:\mathrm{1}\:{money}\:{and} \\ $$$$\mathrm{1}\:{Camel}\:{costs}\:\mathrm{5}\:{money}. \\ $$$${find}\:{total}\:{number}\:{of}\:{Donkys},\:{Horses}, \\ $$$${and}\:{Camels}. \\ $$
Commented by Davidtim last updated on 21/May/24
please help me!!!
$${please}\:{help}\:{me}!!! \\ $$
Answered by Tinku Tara last updated on 21/May/24
If we buy d donkeys, h horses and  c camels.  c+h+d=100  (i)  money for camels 5c, horses h,  and donkeys d/20  5c+h+(d/(20))=100  (ii)  (ii)−(i)  4c−((19d)/(20))=0  19d=80c  d, c are integers so only solution is  c=19  d=80  c+d+h=100  ⇒h=1  Camels 19  Donkeys 80  Horses 1
$$\mathrm{If}\:\mathrm{we}\:\mathrm{buy}\:{d}\:\mathrm{donkeys},\:{h}\:\mathrm{horses}\:\mathrm{and} \\ $$$${c}\:\mathrm{camels}. \\ $$$$\mathrm{c}+\mathrm{h}+\mathrm{d}=\mathrm{100}\:\:\left(\mathrm{i}\right) \\ $$$$\mathrm{money}\:\mathrm{for}\:\mathrm{camels}\:\mathrm{5c},\:\mathrm{horses}\:{h}, \\ $$$$\mathrm{and}\:\mathrm{donkeys}\:\mathrm{d}/\mathrm{20} \\ $$$$\mathrm{5c}+\mathrm{h}+\frac{\mathrm{d}}{\mathrm{20}}=\mathrm{100}\:\:\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{ii}\right)−\left(\mathrm{i}\right) \\ $$$$\mathrm{4c}−\frac{\mathrm{19d}}{\mathrm{20}}=\mathrm{0} \\ $$$$\mathrm{19d}=\mathrm{80c} \\ $$$$\mathrm{d},\:\mathrm{c}\:\mathrm{are}\:\mathrm{integers}\:\mathrm{so}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\mathrm{c}=\mathrm{19} \\ $$$$\mathrm{d}=\mathrm{80} \\ $$$$\mathrm{c}+\mathrm{d}+\mathrm{h}=\mathrm{100} \\ $$$$\Rightarrow\mathrm{h}=\mathrm{1} \\ $$$$\mathrm{C}{amels}\:\mathrm{19} \\ $$$$\mathrm{Donkeys}\:\mathrm{80} \\ $$$$\mathrm{Horses}\:\mathrm{1} \\ $$
Commented by Davidtim last updated on 21/May/24
so much thanks
$${so}\:{much}\:{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *