Menu Close

calculer-lim-n-oo-f-n-x-f-n-x-0-oo-ne-x-1-nx-dx-x-0-oo-




Question Number 207634 by SANOGO last updated on 21/May/24
calculer lim  n→+oo f_n (x)  f_n (x)=∫_0^  ^(+oo) ((ne^(−x) )/(1+nx))dx   /x∈[0+oo[
calculerlimn+oofn(x)fn(x)=0+oonex1+nxdx/x[0+oo[
Answered by Berbere last updated on 21/May/24
i Think is U_n =∫_0 ^∞ ((ne^(−x) )/(1+nx))dx=^(IBP) [ln(1+nx)e^(−x) ]_0 ^∞ +∫_0 ^∞ ln(1+nx)e^(−x) dx  =∫_0 ^1 ln(1+nx)e^(−x) +∫_1 ^∞ ln(1+nx)e^(−x) dx  ∫_0 ^1 ln(1+nx)e^(−x) dx>0⇒U_n >∫_1 ^∞ ln(1+nx)e^(−x) dx  ∀x≥1;ln(1+nx)≥ln(1+n)⇒U_n ≥∫_1 ^∞ ln(1+n)e^(−x) dx  =ln(1+n)[−e^(−x) ]=((ln(1+n))/e)  U_n >((ln(1+n))/e)⇒U_n →+∞
iThinkisUn=0nex1+nxdx=IBP[ln(1+nx)ex]0+0ln(1+nx)exdx=01ln(1+nx)ex+1ln(1+nx)exdx01ln(1+nx)exdx>0Un>1ln(1+nx)exdxx1;ln(1+nx)ln(1+n)Un1ln(1+n)exdx=ln(1+n)[ex]=ln(1+n)eUn>ln(1+n)eUn+
Commented by SANOGO last updated on 21/May/24
merci  beaucoup
mercibeaucoup

Leave a Reply

Your email address will not be published. Required fields are marked *