Question Number 207641 by hardmath last updated on 21/May/24
$$\mathrm{Find}:\:\:\:\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}\:−\:\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}}\:\:=\:\:? \\ $$
Commented by Frix last updated on 22/May/24
$$\mathrm{4}−\mathrm{2}\sqrt{\mathrm{7}}\mathrm{cos}\:\frac{\pi+\mathrm{2sin}^{−\mathrm{1}} \:\frac{\mathrm{37}\sqrt{\mathrm{7}}}{\mathrm{98}}}{\mathrm{6}} \\ $$
Answered by Berbere last updated on 22/May/24
$${cos}\left(\mathrm{20}\right)={a};{cos}\left(\mathrm{3}.\mathrm{20}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{a}^{\mathrm{3}} −\mathrm{3}{a}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\mathrm{8}{a}^{\mathrm{3}} −\mathrm{6}{a}−\mathrm{1}=\mathrm{0} \\ $$$${a}^{\mathrm{3}} =\frac{\mathrm{3}{a}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Leftrightarrow\mathrm{4}\left(\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{{a}}=\mathrm{4}\left(\mathrm{4}{a}^{\mathrm{4}} −\mathrm{4}{a}^{\mathrm{2}} +\mathrm{1}\right)−\frac{\mathrm{1}}{{a}} \\ $$$$={a}\left(\mathrm{16}{a}^{\mathrm{3}} \right)−\mathrm{16}{a}^{\mathrm{2}} +\mathrm{4}−\frac{\mathrm{1}}{{a}}={a}\left(\mathrm{12}{a}+\mathrm{2}\right)−\mathrm{16}{a}^{\mathrm{2}} +\mathrm{4}−\frac{\mathrm{1}}{{a}} \\ $$$$=−\mathrm{4}{a}^{\mathrm{2}} +\mathrm{2}{a}+\mathrm{4}−\frac{\mathrm{1}}{{a}}=\frac{−\mathrm{4}{a}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{2}} +\mathrm{4}{a}−\mathrm{1}}{{a}} \\ $$$$=\frac{\mathrm{2}{a}^{\mathrm{2}} +{a}−\frac{\mathrm{3}}{\mathrm{2}}}{{a}}=\frac{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{3}+\mathrm{2}{a}}{\mathrm{2}{a}}{t}=\frac{\mathrm{4}{a}^{\mathrm{3}} −\mathrm{3}{a}+\mathrm{2}{a}^{\mathrm{2}} }{\mathrm{2}{a}^{\mathrm{2}} }=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${cos}\left(\frac{\pi}{\mathrm{9}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({e}^{\frac{{i}\pi}{\mathrm{9}}} +{e}^{−\frac{{i}\pi}{\mathrm{9}}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}+\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{2}}−\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}}\right) \\ $$$$\mathrm{4}{cos}^{\mathrm{2}} \left(\mathrm{40}\right)−\frac{\mathrm{1}}{{cos}\left(\mathrm{20}\right)}=\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{4}}.\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+{i}\sqrt{\mathrm{3}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−{i}\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$
Commented by Frix last updated on 22/May/24
$$\mathrm{I}\:\mathrm{think}\:\mathrm{this}\:\mathrm{is}\:\mathrm{wrong}.\:\mathrm{Your}\:\mathrm{solution}\:\mathrm{gives} \\ $$$$\mathrm{1}.\mathrm{2660}…\:\mathrm{but}\:\mathrm{4cos}^{\mathrm{2}} \:\mathrm{40}°\:−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}°}\approx\mathrm{1}.\mathrm{2831} \\ $$
Commented by Berbere last updated on 22/May/24
$${there}\:{is}\:{a}\:{square}\:{yes}\:{thank}\:{you} \\ $$
Commented by Frix last updated on 22/May/24
$$\mathrm{Look}\:\mathrm{at}\:\mathrm{my}\:\mathrm{question}\:\mathrm{207434},\:\mathrm{I}\:\mathrm{found}\:\mathrm{an} \\ $$$$\mathrm{interesting}\:\mathrm{equation}… \\ $$
Commented by Berbere last updated on 23/May/24
$${nice}\:{solution}\:{sir} \\ $$
Commented by hardmath last updated on 24/May/24
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$