prove-that-a-a-dx-x-n-1-x-2n-1-a- Tinku Tara May 21, 2024 Integration 0 Comments FacebookTweetPin Question Number 207620 by Ghisom last updated on 21/May/24 provethat∫a−adxxn+1+x2n+1=a Answered by Berbere last updated on 21/May/24 ∫−aaxn+1−1+x2n2xn=Un=∫−aa12+1−1+x2n2xn=a+∫−aa12+∫−aa1−1+x2n2xndx=a+12∫−aa1−1+x2n2xndx⇒∀n∈N∫−aa1−1+x2n2xn=0youcanseeitifn=2k1−1+x2n2xn0<;∀x∈R−{0}⇒∫−aa1−1+x2n2xn<0≠0onlyifa=0Theresultaistrueifn=2k+1;k∈Nf∗={1−1+x2n2xn=x≠0;n=2k+1;k∈N=0ifx=0f∗(−x)=−f(x);∀x∈R∫−aaf∗(x)dx=0⇒U2n+1=a Commented by Ghisom last updated on 21/May/24 thankyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-207638Next Next post: Find-4-cos-2-40-1-cos-20- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.