Menu Close

prove-that-a-a-dx-x-n-1-x-2n-1-a-




Question Number 207620 by Ghisom last updated on 21/May/24
prove that ∫_(−a) ^a  (dx/(x^n +1+(√(x^(2n) +1))))=a
provethataadxxn+1+x2n+1=a
Answered by Berbere last updated on 21/May/24
∫_(−a) ^a ((x^n +1−(√(1+x^(2n) )))/(2x^n ))=U_n   =∫_(−a) ^a (1/2)+((1−(√(1+x^(2n) )))/(2x^n ))=a+∫_(−a) ^a (1/2)+∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))dx  =a+(1/2)∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))dx  ⇒∀n∈N∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))=0 you can see it if  n=2k  ((1−(√(1+x^(2n) )))/(2x^n ))0  <;∀x∈R−{0}  ⇒∫_(−a) ^a ((1−(√(1+x^(2n) )))/(2x^n ))<0≠0 only if a=0  The resulta is true if n=2k+1;k∈N  f^∗ = { ((((1−(√(1+x^(2n) )))/(2x^n ))=x≠0;n=2k+1;k∈N)),((=0 if x=0)) :}  f^∗ (−x)=−f(x);∀x∈R  ∫_(−a) ^a f^∗ (x)dx=0⇒U_(2n+1) =a
aaxn+11+x2n2xn=Un=aa12+11+x2n2xn=a+aa12+aa11+x2n2xndx=a+12aa11+x2n2xndxnNaa11+x2n2xn=0youcanseeitifn=2k11+x2n2xn0<;xR{0}aa11+x2n2xn<00onlyifa=0Theresultaistrueifn=2k+1;kNf={11+x2n2xn=x0;n=2k+1;kN=0ifx=0f(x)=f(x);xRaaf(x)dx=0U2n+1=a
Commented by Ghisom last updated on 21/May/24
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *