Menu Close

0-1-log-1-x-3-dx-and-0-1-log-1-x-4-dx-and-if-possible-then-find-the-value-of-p-p-0-1-log-1-x-n-dx-n-N-




Question Number 207652 by universe last updated on 22/May/24
   ∫_0 ^1 log(1+x^3 )dx  = ?and  ∫_0 ^1 log (1+x^4 )dx = ?    and if possible then find the value of  p   p   =   ∫_0 ^1 log(1+x^n )dx = ?      n∈N
01log(1+x3)dx=?and01log(1+x4)dx=?andifpossiblethenfindthevalueofpp=01log(1+xn)dx=?nN
Answered by Berbere last updated on 22/May/24
using x^n +1 =Π_(k=0) ^(n−1) (x−e^(i(2k+1)(π/n)) )=Π_(k=0) ^(n−1) ln(x−e^((i(2k+1)π)/n) )  ∫_0 ^1 ln(x−e^(i(((2k+1)π)/n))) )dx=ln(e^(i(π+((2k+1)/n)π)) (1−xe^((i(2k+1)π)/n) ))  using principal log representation  log(z)=ln∣z∣+iarg(z);arg(z)∈[−(π/2),((3π)/2)[  e^(i(π+((2k+1)/n)π)) =e^(i(−π+((2k+1)/n)π)) ;ln(e^(i(−π+((2k+1)/n)π)) )=i(−π+((2k+1)/n)π)  p=Σ_(k=0) ^(n−1) i(−π+((2k+1)/n)π)+Σ_(k=0) ^(n−1) ∫_0 ^1 ln(1−xe^(−i(((2k+1)/n))π) )dx  =Σ_(k=0) ^(n−1) ∫_0 ^1 ln(1−xe^(−i(((2k+1)/n))π) )dx  ln(1−xa)]_0 ^1 =(1/a)((ax−1)ln(1−xa)−ax)]_0 ^1   =(1/a)(a−1)ln(1−a)−1  =Σ_(k=0) ^(n−1) e^(i(((2k+1)/n))π) [(e^(−i(((2k+1)/n))π) −1)ln(1−e^(−((iπ)/n)(2k+1)) )−1]
usingxn+1=n1k=0(xei(2k+1)πn)=n1k=0ln(xei(2k+1)πn)01ln(xei(2k+1)πn))dx=ln(ei(π+2k+1nπ)(1xei(2k+1)πn))usingprincipallogrepresentationlog(z)=lnz+iarg(z);arg(z)[π2,3π2[ei(π+2k+1nπ)=ei(π+2k+1nπ);ln(ei(π+2k+1nπ))=i(π+2k+1nπ)p=n1k=0i(π+2k+1nπ)+n1k=001ln(1xei(2k+1n)π)dx=n1k=001ln(1xei(2k+1n)π)dxln(1xa)]01=1a((ax1)ln(1xa)ax)]01=1a(a1)ln(1a)1=n1k=0ei(2k+1n)π[(ei(2k+1n)π1)ln(1eiπn(2k+1))1]

Leave a Reply

Your email address will not be published. Required fields are marked *