Question Number 207648 by SANOGO last updated on 22/May/24
$${f}_{{n}} \left({x}\right)=\frac{{n}}{\mathrm{1}+{x}^{\mathrm{2}} }{sin}\left(\frac{{x}}{{n}}\right)\:\:/{x}\in\left[\mathrm{0},\mathrm{1}\right]\:,\:\:{n}\geqslant\mathrm{1} \\ $$$${calculer}\:{lim}\:{n}\rightarrow\infty\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx} \\ $$
Commented by mr W last updated on 22/May/24
$${why}\:{don}'{t}\:{you}\:{use}\:+\infty\:{instead}\:{of}\: \\ $$$$+{oo}? \\ $$$${why}\:{don}'{t}\:{you}\:{use}\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{instead}\:{of}\: \\ $$$${lim}\:{n}\rightarrow+{oo}? \\ $$
Answered by Berbere last updated on 22/May/24
$${lemma}\:{sin}\left({x}\right)\leqslant{x};\forall{x}\geqslant\mathrm{0} \\ $$$${sin}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {cos}\left({t}\right){dt}\leqslant\int_{\mathrm{0}} ^{{x}} \mathrm{1}{dt}={x} \\ $$$${f}_{{n}} \left({x}\right)\leqslant\frac{{n}}{\mathrm{1}+{x}^{\mathrm{2}} }.\frac{{x}}{{n}}=\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }={G}\left({x}\right) \\ $$$${G}\left({x}\right)\:{integrable}\:{over}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{n}}{\mathrm{1}+{x}^{\mathrm{2}} }.{sin}\left(\frac{{x}}{{n}}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\rightarrow\infty} {\mathrm{lim}}.\frac{{nsin}\left(\frac{{x}}{{n}}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sin}\left(\frac{{x}}{{n}}\right).{x}}{\frac{{x}}{{n}}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx};\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({a}\right)}{{a}}=\mathrm{1} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\left[\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}={ln}\left(\sqrt{\mathrm{2}}\right) \\ $$