Menu Close

f-n-x-n-1-x-2-sin-x-n-x-0-1-n-1-calculer-lim-n-0-1-f-n-x-dx-




Question Number 207648 by SANOGO last updated on 22/May/24
f_n (x)=(n/(1+x^2 ))sin((x/n))  /x∈[0,1] ,  n≥1  calculer lim n→∞∫_0 ^1 f_n (x)dx
fn(x)=n1+x2sin(xn)/x[0,1],n1calculerlimn01fn(x)dx
Commented by mr W last updated on 22/May/24
why don′t you use +∞ instead of   +oo?  why don′t you use lim_(n→+∞)  instead of   lim n→+oo?
whydontyouuse+insteadof+oo?whydontyouuselimn+insteadoflimn+oo?
Answered by Berbere last updated on 22/May/24
lemma sin(x)≤x;∀x≥0  sin(x)=∫_0 ^x cos(t)dt≤∫_0 ^x 1dt=x  f_n (x)≤(n/(1+x^2 )).(x/n)=(x/(1+x^2 ))=G(x)  G(x) integrable over [0,1]  lim_(n→∞) ∫_0 ^1 (n/(1+x^2 )).sin((x/n))dx=∫_0 ^1 lim_(n→∞) .((nsin((x/n)))/(1+x^2 ))dx  =∫_0 ^1 ((sin((x/n)).x)/((x/n)(1+x^2 )))dx;lim_(x→0) ((sin(a))/a)=1  =∫_0 ^1 (x/(1+x^2 ))dx=[((ln(1+x^2 ))/2)]_0 ^1 =((ln(2))/2)=ln((√2))
lemmasin(x)x;x0sin(x)=0xcos(t)dt0x1dt=xfn(x)n1+x2.xn=x1+x2=G(x)G(x)integrableover[0,1]limn01n1+x2.sin(xn)dx=01limn.nsin(xn)1+x2dx=01sin(xn).xxn(1+x2)dx;limx0sin(a)a=1=01x1+x2dx=[ln(1+x2)2]01=ln(2)2=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *