Menu Close

If-p-q-r-0-and-A-p-2-q-2-r-2-2-pq-2-qr-2-rp-2-B-q-2-pr-p-2-q-2-r-2-Find-A-2-4B-




Question Number 207664 by efronzo1 last updated on 22/May/24
    If p+q+r = 0 and       A=(((p^2 +q^2 +r^2 )^2 )/((pq)^2 +(qr)^2 +(rp)^2 ))      B= ((q^2 −pr)/(p^2 +q^2 +r^2 )) .    Find A^2 −4B
$$\:\:\:\:\mathrm{If}\:\mathrm{p}+\mathrm{q}+\mathrm{r}\:=\:\mathrm{0}\:\mathrm{and}\: \\ $$$$\:\:\:\:\mathrm{A}=\frac{\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{pq}\right)^{\mathrm{2}} +\left(\mathrm{qr}\right)^{\mathrm{2}} +\left(\mathrm{rp}\right)^{\mathrm{2}} }\: \\ $$$$\:\:\:\mathrm{B}=\:\frac{\mathrm{q}^{\mathrm{2}} −\mathrm{pr}}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }\:. \\ $$$$\:\:\mathrm{Find}\:\mathrm{A}^{\mathrm{2}} −\mathrm{4B}\: \\ $$
Answered by A5T last updated on 22/May/24
(p+q+r)^2 =p^2 +q^2 +r^2 +2(pq+qr+rp)  ⇒p^2 +q^2 +r^2 =−2(pq+qr+rp)  (pq)^2 +(qr)^2 +(rp)^2 =(pq+qr+rp)^2 −2pqr(p+q+r)  ⇒A^2 =((16(pq+qr+rp)^4 )/((pq+qr+rp)^4 ))=16  q^2 =(p+r)^2 =p^2 +r^2 +2pr⇒q^2 −pr=p^2 +r^2 +pr  p^2 +q^2 +r^2 =2(p^2 +r^2 +pr)  ⇒B=((q^2 −pr)/(p^2 +q^2 +r^2 ))=(1/2)  ⇒A−4B=16−4((1/2))=14
$$\left({p}+{q}+{r}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}\left({pq}+{qr}+{rp}\right) \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =−\mathrm{2}\left({pq}+{qr}+{rp}\right) \\ $$$$\left({pq}\right)^{\mathrm{2}} +\left({qr}\right)^{\mathrm{2}} +\left({rp}\right)^{\mathrm{2}} =\left({pq}+{qr}+{rp}\right)^{\mathrm{2}} −\mathrm{2}{pqr}\left({p}+{q}+{r}\right) \\ $$$$\Rightarrow{A}^{\mathrm{2}} =\frac{\mathrm{16}\left({pq}+{qr}+{rp}\right)^{\mathrm{4}} }{\left({pq}+{qr}+{rp}\right)^{\mathrm{4}} }=\mathrm{16} \\ $$$${q}^{\mathrm{2}} =\left({p}+{r}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{pr}\Rightarrow{q}^{\mathrm{2}} −{pr}={p}^{\mathrm{2}} +{r}^{\mathrm{2}} +{pr} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{2}\left({p}^{\mathrm{2}} +{r}^{\mathrm{2}} +{pr}\right) \\ $$$$\Rightarrow{B}=\frac{{q}^{\mathrm{2}} −{pr}}{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{A}−\mathrm{4}{B}=\mathrm{16}−\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{14} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *