Menu Close

P-1-1-3-1-5-1-7-1-2023-Q-1-1-2023-1-3-2021-1-5-2019-1-2023-1-P-Q-




Question Number 207661 by efronzo1 last updated on 22/May/24
 P=1+(1/3)+(1/5)+(1/7)+...+(1/(2023))   Q= (1/(1×2023))+(1/(3×2021))+(1/(5×2019))+...+(1/(2023×1))    (P/Q)=?
P=1+13+15+17++12023Q=11×2023+13×2021+15×2019++12023×1PQ=?
Answered by Frix last updated on 22/May/24
P(m)=Σ_(k=1) ^((m+1)/2)  (1/(2k−1)) ∧m=2n−1  P(2n−1)=Σ_(k=1) ^n  (1/(2k−1)) =H_(2n−1) −(H_(n−1) /2)  Q(m)=Σ_(k=1) ^((m+1)/2) (1/((2k−1)(m+1−(2k−1))) ∧m=2n−1  Q(2n−1)=Σ_(k=1) ^n  (1/((2k−1)(2n−2k+1))) =  =(1/(2n))(Σ_(k=1) ^n  (1/(2k−1)) +Σ_(k=1) ^n  (1/(2n−2k+1)))=       [Σ_(k=1) ^n  (1/(2k−1)) =Σ_(k=1) ^n  (1/(2n−2k+1))]  =(1/n)(H_(2n−1) −(H_(n−1) /2))  ⇒  ((P(2n−1))/(Q(2n−1)))=n  ⇒  ((P(m))/(Q(m)))=((m+1)/2)  m=2023 ⇒ Answer is 1012
P(m)=m+12k=112k1m=2n1P(2n1)=nk=112k1=H2n1Hn12Q(m)=m+12k=11(2k1)(m+1(2k1)m=2n1Q(2n1)=nk=11(2k1)(2n2k+1)==12n(nk=112k1+nk=112n2k+1)=[nk=112k1=nk=112n2k+1]=1n(H2n1Hn12)P(2n1)Q(2n1)=nP(m)Q(m)=m+12m=2023Answeris1012
Answered by MM42 last updated on 22/May/24
Q=(1/(2024))[(1+(1/(2023)))+((1/3)+(1/(2021)))+((1/5)+(1/(2019)))+...+((1/(2019))+(1/5))+((1/(2021))+(1/3))+((1/(2023))+1)]  =(1/(2024))[2p]=(p/(1012))  ⇒(P/Q)=1012 ✓
Q=12024[(1+12023)+(13+12021)+(15+12019)++(12019+15)+(12021+13)+(12023+1)]=12024[2p]=p1012PQ=1012

Leave a Reply

Your email address will not be published. Required fields are marked *