P-1-1-3-1-5-1-7-1-2023-Q-1-1-2023-1-3-2021-1-5-2019-1-2023-1-P-Q- Tinku Tara May 22, 2024 Algebra 0 Comments FacebookTweetPin Question Number 207661 by efronzo1 last updated on 22/May/24 P=1+13+15+17+…+12023Q=11×2023+13×2021+15×2019+…+12023×1PQ=? Answered by Frix last updated on 22/May/24 P(m)=∑m+12k=112k−1∧m=2n−1P(2n−1)=∑nk=112k−1=H2n−1−Hn−12Q(m)=∑m+12k=11(2k−1)(m+1−(2k−1)∧m=2n−1Q(2n−1)=∑nk=11(2k−1)(2n−2k+1)==12n(∑nk=112k−1+∑nk=112n−2k+1)=[∑nk=112k−1=∑nk=112n−2k+1]=1n(H2n−1−Hn−12)⇒P(2n−1)Q(2n−1)=n⇒P(m)Q(m)=m+12m=2023⇒Answeris1012 Answered by MM42 last updated on 22/May/24 Q=12024[(1+12023)+(13+12021)+(15+12019)+…+(12019+15)+(12021+13)+(12023+1)]=12024[2p]=p1012⇒PQ=1012✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-207673Next Next post: 4-2x-1-27-3x-1-125-5x-1-144-4x-1-Find-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.