Question Number 207691 by cherokeesay last updated on 23/May/24
Answered by mr W last updated on 24/May/24
Commented by mr W last updated on 23/May/24
$${DE}=\sqrt{\mathrm{10}^{\mathrm{2}} −\left(\mathrm{4}+\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{2}×\mathrm{10}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$${DC}=\sqrt{\mathrm{10}^{\mathrm{2}} −\left(\mathrm{4}+\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$${R}=\frac{\mathrm{2}\sqrt{\mathrm{14}}}{\mathrm{2}×\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}}=\mathrm{4}\sqrt{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 21/Jun/24
$$\mathrm{many}\:\mathrm{things}\:\mathrm{to}\:\mathrm{learn} \\ $$
Answered by A5T last updated on 23/May/24
$$\left(\mathrm{2}×\mathrm{10}×\mathrm{11}−\mathrm{2}×\mathrm{4}×\mathrm{10}\right){cos}\theta=\mathrm{10}^{\mathrm{2}} +\mathrm{11}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} −\mathrm{10}^{\mathrm{2}} \\ $$$$\Rightarrow{cos}\theta=\frac{\mathrm{105}}{\mathrm{140}}=\frac{\mathrm{3}}{\mathrm{4}}\Rightarrow{sin}\theta=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}};{cos}\mathrm{2}\theta=\frac{\mathrm{1}}{\mathrm{8}};{sin}\mathrm{2}\theta=\frac{\mathrm{3}\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$$${AC}=\sqrt{\mathrm{11}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{2}×\mathrm{11}×\mathrm{4}{cos}\mathrm{2}\theta}=\mathrm{3}\sqrt{\mathrm{14}} \\ $$$$\frac{\mathrm{4}×\mathrm{11}×\mathrm{3}\sqrt{\mathrm{14}}}{\mathrm{4}{R}}=\frac{\mathrm{4}×\mathrm{11}×\frac{\mathrm{3}\sqrt{\mathrm{7}}}{\mathrm{8}}}{\mathrm{2}}\Rightarrow\frac{\sqrt{\mathrm{2}}}{{R}}=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow{R}=\mathrm{4}\sqrt{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 23/May/24
$${nice}\:!\:{thank}\:{you}. \\ $$
Answered by mr W last updated on 23/May/24
$${AD}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}×\mathrm{10}\:\mathrm{cos}\:\theta \\ $$$${DC}^{\mathrm{2}} =\mathrm{11}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}×\mathrm{11}×\mathrm{10}\:\mathrm{cos}\:\theta \\ $$$${AD}={DC} \\ $$$$\mathrm{4}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}×\mathrm{10}\:\mathrm{cos}\:\theta=\mathrm{11}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}×\mathrm{11}×\mathrm{10}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{2}\left(\mathrm{11}−\mathrm{4}\right)×\mathrm{10}\:\mathrm{cos}\:\theta=\mathrm{11}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{11}+\mathrm{4}}{\mathrm{2}×\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{4}}\:\Rightarrow\mathrm{sin}\:\theta=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}} \\ $$$${DC}=\sqrt{\mathrm{11}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}×\mathrm{11}×\mathrm{10}×\frac{\mathrm{3}}{\mathrm{4}}}=\mathrm{2}\sqrt{\mathrm{14}} \\ $$$${R}=\frac{{DC}}{\mathrm{2}\:\mathrm{sin}\:\theta}=\frac{\mathrm{2}\sqrt{\mathrm{14}}}{\mathrm{2}×\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}}=\mathrm{4}\sqrt{\mathrm{2}}\:\checkmark \\ $$
Commented by cherokeesay last updated on 23/May/24
$${nice}\:{thank}\:{you}\:{master}. \\ $$