Menu Close

Simplify-b-1-4-c-c-1-4-b-b-1-4-c-c-1-4-




Question Number 207771 by hardmath last updated on 25/May/24
Simplify:     (((b)^(1/4)   (√c)  −  (c)^(1/4)   (√b))/( (b)^(1/4)   (√c)  −  (c)^(1/4) ))  =  ?
$$\mathrm{Simplify}:\:\:\:\:\:\frac{\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{b}}}\:\:\sqrt{\boldsymbol{\mathrm{c}}}\:\:−\:\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{c}}}\:\:\sqrt{\boldsymbol{\mathrm{b}}}}{\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{b}}}\:\:\sqrt{\boldsymbol{\mathrm{c}}}\:\:−\:\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{c}}}}\:\:=\:\:? \\ $$
Answered by Rasheed.Sindhi last updated on 26/May/24
((b^(1/4) c^(1/2) −c^(1/4) b^(1/2) )/(b^(1/4) c^(1/2) −c^(1/4) ))  ((b^(1/4) c^(1/4) (c^(1/4) −b^(1/4) ))/(c^(1/4) (b^(1/4) c^(1/4) −1)))  ((b^(1/4) (c^(1/4) −b^(1/4) ))/(b^(1/4) c^(1/4) −1))  ((b^(1/4) (c^(1/4) −b^(1/4) ))/(b^(1/4) c^(1/4) −1))∙((b^(1/4) c^(1/4) +1)/(b^(1/4) c^(1/4) +1))  ((b^(1/4) (c^(1/4) −b^(1/4) )(b^(1/4) c^(1/4) +1))/(b^(1/2) c^(1/2) −1))  ((b^(1/4) (c^(1/4) −b^(1/4) )(b^(1/4) c^(1/4) +1))/(b^(1/2) c^(1/2) −1))∙((b^(1/2) c^(1/2) +1)/(b^(1/2) c^(1/2) +1))  ((b^(1/4) (c^(1/4) −b^(1/4) )(b^(1/4) c^(1/4) +1)(b^(1/2) c^(1/2) +1))/(bc−1))
$$\frac{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{2}} −{c}^{\mathrm{1}/\mathrm{4}} {b}^{\mathrm{1}/\mathrm{2}} }{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{2}} −{c}^{\mathrm{1}/\mathrm{4}} } \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)}{{c}^{\mathrm{1}/\mathrm{4}} \left({b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}\right)} \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)}{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}} \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)}{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} −\mathrm{1}}\centerdot\frac{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} +\mathrm{1}}{{b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} +\mathrm{1}} \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)\left({b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} +\mathrm{1}\right)}{{b}^{\mathrm{1}/\mathrm{2}} {c}^{\mathrm{1}/\mathrm{2}} −\mathrm{1}} \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)\left({b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} +\mathrm{1}\right)}{{b}^{\mathrm{1}/\mathrm{2}} {c}^{\mathrm{1}/\mathrm{2}} −\mathrm{1}}\centerdot\frac{{b}^{\mathrm{1}/\mathrm{2}} {c}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}}{{b}^{\mathrm{1}/\mathrm{2}} {c}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{{b}^{\mathrm{1}/\mathrm{4}} \left({c}^{\mathrm{1}/\mathrm{4}} −{b}^{\mathrm{1}/\mathrm{4}} \right)\left({b}^{\mathrm{1}/\mathrm{4}} {c}^{\mathrm{1}/\mathrm{4}} +\mathrm{1}\right)\left({b}^{\mathrm{1}/\mathrm{2}} {c}^{\mathrm{1}/\mathrm{2}} +\mathrm{1}\right)}{{bc}−\mathrm{1}} \\ $$
Commented by hardmath last updated on 28/May/24
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *