Question Number 207752 by efronzo1 last updated on 25/May/24
$$\:\mathrm{Two}\:\mathrm{ships}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{berth}\: \\ $$$$\:\mathrm{in}\:\mathrm{a}\:\mathrm{port}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\:\mathrm{arrival}\:\mathrm{times}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{ships}\: \\ $$$$\:\mathrm{are}\:\mathrm{independent}\:\mathrm{and}\:\mathrm{have}\:\mathrm{the}\: \\ $$$$\:\mathrm{same}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{docking}\: \\ $$$$\mathrm{on}\:\mathrm{a}\:\mathrm{Sunday}\:\left(\mathrm{00}.\mathrm{00}−\mathrm{24}.\mathrm{00}\right) \\ $$$$\:\mathrm{If}\:\mathrm{the}\:\mathrm{berth}\:\mathrm{time}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{ship} \\ $$$$\:\mathrm{is}\:\mathrm{2}\:\mathrm{hours}\:\mathrm{and}\:\mathrm{the}\:\mathrm{berth}\:\mathrm{time} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{second}\:\mathrm{ship}\:\mathrm{is}\:\mathrm{4}\:\mathrm{hours},\: \\ $$$$\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{one}\:\mathrm{ship} \\ $$$$\:\mathrm{will}\:\mathrm{have}\:\mathrm{to}\:\mathrm{wait}\:\mathrm{until}\:\mathrm{the} \\ $$$$\:\mathrm{berth}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used}\:\mathrm{is}\: \\ $$$$\:\Box\:\frac{\mathrm{67}}{\mathrm{144}}\:\:\:\:\:\Box\:\frac{\mathrm{67}}{\mathrm{288}}\:\:\:\:\Box\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\Box\frac{\mathrm{33}}{\mathrm{144}} \\ $$
Commented by mr W last updated on 25/May/24
$${p}=\mathrm{1}−\frac{\mathrm{22}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}×\mathrm{24}^{\mathrm{2}} }=\frac{\mathrm{67}}{\mathrm{288}}\:\checkmark \\ $$
Commented by efronzo1 last updated on 25/May/24
$$\mathrm{why}\:\mathrm{sir}\:\mathrm{1}−\frac{\mathrm{22}^{\mathrm{2}} +\mathrm{24}^{\mathrm{2}} }{\mathrm{2}.\mathrm{24}^{\mathrm{2}} }\:? \\ $$
Commented by mr W last updated on 25/May/24
$${my}\:{method}\:{see}\:{below} \\ $$
Answered by mr W last updated on 25/May/24
Commented by mr W last updated on 25/May/24
$${say}\:{the}\:{first}\:{ship}\:{arrives}\:{at}\:{time}\:{x} \\ $$$$\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{24}\right)\:{and}\:{the}\:{second}\:{ship}\:{at} \\ $$$${time}\:{y}\:\left(\mathrm{0}\leqslant{y}\leqslant\mathrm{24}\right). \\ $$$${such}\:{that}\:{the}\:{second}\:{ship}\:{doesn}'{t} \\ $$$${need}\:{to}\:{wait}: \\ $$$${y}\geqslant{x}+\mathrm{2}\:\:\:\:\:…\left({i}\right) \\ $$$${such}\:{that}\:{the}\:{first}\:{ship}\:{doesn}'{t} \\ $$$${need}\:{to}\:{wait}: \\ $$$${x}\geqslant{y}+\mathrm{4}\:\:\:…\left({ii}\right) \\ $$$${we}\:{can}\:{intepret}\:{this}\:{geometrically}: \\ $$$${each}\:{point}\:\left({x},\:{y}\right)\:{in}\:{the}\:{square} \\ $$$$\mathrm{24}×\mathrm{24}\:{shows}\:{the}\:{random}\:{arrival} \\ $$$${times}\:{of}\:{both}\:{ships}.\:{if}\:{this}\:{point}\:{lies} \\ $$$${in}\:{the}\:{hatched}\:{zones},\:{which}\:{mean} \\ $$$${the}\:{conditions}\:\left({i}\right)\:{and}\:\left({ii}\right),\:{then} \\ $$$${no}\:{ship}\:{needs}\:{to}\:{wait}.\:{otherwise}\: \\ $$$${one}\:{ship}\:{has}\:{to}\:{wait}. \\ $$$${the}\:{area}\:{of}\:{hatched}\:{zones}\:{is} \\ $$$$\frac{\mathrm{22}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}}.\:{the}\:{total}\:{area}\:{is}\:\mathrm{24}^{\mathrm{2}} . \\ $$$${so}\:{the}\:{probability}\:{that}\:{one}\:{ship} \\ $$$${has}\:{to}\:{wait}\:{is} \\ $$$${p}=\frac{\mathrm{24}^{\mathrm{2}} −\frac{\mathrm{22}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}}}{\mathrm{24}^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{22}^{\mathrm{2}} +\mathrm{20}^{\mathrm{2}} }{\mathrm{2}×\mathrm{24}^{\mathrm{2}} }=\frac{\mathrm{67}}{\mathrm{288}} \\ $$