Menu Close

n-married-couples-are-invited-to-a-dance-party-for-the-first-dance-n-paires-are-radomly-selected-what-s-the-probability-that-no-woman-dances-with-her-own-husband-1-if-a-pair-must-be-of-different-




Question Number 207787 by mr W last updated on 26/May/24
n married couples are invited to  a dance party. for the first dance  n paires are radomly selected.   what′s the probability that no woman  dances with her own husband?  1) if a pair must be of different       genders.  2) if a pair can also be of the same        gender.
$$\boldsymbol{{n}}\:{married}\:{couples}\:{are}\:{invited}\:{to} \\ $$$${a}\:{dance}\:{party}.\:{for}\:{the}\:{first}\:{dance} \\ $$$$\boldsymbol{{n}}\:{paires}\:{are}\:{radomly}\:{selected}.\: \\ $$$${what}'{s}\:{the}\:{probability}\:{that}\:{no}\:{woman} \\ $$$${dances}\:{with}\:{her}\:{own}\:{husband}? \\ $$$$\left.\mathrm{1}\right)\:{if}\:{a}\:{pair}\:{must}\:{be}\:{of}\:{different} \\ $$$$\:\:\:\:\:{genders}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{a}\:{pair}\:{can}\:{also}\:{be}\:{of}\:{the}\:{same}\: \\ $$$$\:\:\:\:\:{gender}. \\ $$
Answered by A5T last updated on 26/May/24
For case 1)  The number of ways such that no woman  dances with her own husband is   D_n =n!(1−(1/(1!))+(1/(2!))−(1/(3!))+(1/(4!))+...+_− (1/(n!)))  (ends with +(1/(n!)) when n is even, − otherwise)  ⇒Probability=(D_n /(n!))=1−(1/(1!))+(1/(2!))−(1/(3!))+...+_− (1/(n!))
$$\left.{For}\:{case}\:\mathrm{1}\right) \\ $$$${The}\:{number}\:{of}\:{ways}\:{such}\:{that}\:{no}\:{woman} \\ $$$${dances}\:{with}\:{her}\:{own}\:{husband}\:{is}\: \\ $$$${D}_{{n}} ={n}!\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+…\underset{−} {+}\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\left({ends}\:{with}\:+\frac{\mathrm{1}}{{n}!}\:{when}\:{n}\:{is}\:{even},\:−\:{otherwise}\right) \\ $$$$\Rightarrow{Probability}=\frac{{D}_{{n}} }{{n}!}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}−\frac{\mathrm{1}}{\mathrm{3}!}+…\underset{−} {+}\frac{\mathrm{1}}{{n}!} \\ $$
Commented by mr W last updated on 26/May/24
��
Commented by A5T last updated on 27/May/24
D_n =n![Σ_(n=0) ^n (−1)^n (1/(n!))]
$${D}_{{n}} ={n}!\left[\underset{{n}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{{n}!}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *