Menu Close

Question-207834




Question Number 207834 by efronzo1 last updated on 28/May/24
Answered by Berbere last updated on 28/May/24
a^(505) =x;y=b^(505)   ⇔ { ((x+y.)),((max{x^4 +y^4 })) :}  x,y∈[0,1]^2 ⇒x^4 ≤x;y^4 <y⇒x^4 +y^4 ≤x+y=1  x=1,y=0 x^4 +y^4 =1  max(x^4 +y^4 )=1  min using (((x^4 +y^4 )/2))^(1/4) ≥((x+y)/2)=(1/2)  ⇒x^4 +y^4 ≥(1/8)(x=(1/2);y=(1/2))
a505=x;y=b505{x+y.max{x4+y4}x,y[0,1]2x4x;y4<yx4+y4x+y=1x=1,y=0x4+y4=1max(x4+y4)=1minusingx4+y424x+y2=12x4+y418(x=12;y=12)

Leave a Reply

Your email address will not be published. Required fields are marked *