Menu Close

If-the-system-y-mx-2-2-4x-2-y-2-4-have-only-one-solution-them-m-A-1-3-B-1-2-C-1-D-2-E-3-




Question Number 207866 by efronzo1 last updated on 29/May/24
   If the system  { ((y=−mx^2 −2)),((4x^2 +y^2 = 4)) :}    have only one solution     them m =     (A) (1/3)   (B)(1/( (√2)))   (C) 1    (D) (√2)   (E) (√3)
Ifthesystem{y=mx224x2+y2=4haveonlyonesolutionthemm=(A)13(B)12(C)1(D)2(E)3
Answered by Rasheed.Sindhi last updated on 29/May/24
     { ((y=−mx^2 −2...(i))),((4x^2 +y^2 = 4...(ii))) :}  x^2 =((−y−2)/m) from (i)  putting in (ii):  4(((−y−2)/m))+y^2 −4=0  my^2 −4m−4y−8=0  my^2 −4y−4m−8=0  y=((4±(√(16−4m(−4m−8))))/(2m))  For one solution  16+16m^2 +32m=0  m^2 +2m+1=0  (m+1)^2 =0  m=−1
{y=mx22(i)4x2+y2=4(ii)x2=y2mfrom(i)puttingin(ii):4(y2m)+y24=0my24m4y8=0my24y4m8=0y=4±164m(4m8)2mForonesolution16+16m2+32m=0m2+2m+1=0(m+1)2=0m=1
Commented by A5T last updated on 29/May/24
m=0 also works.  m=0⇒y=−2⇒x=0⇒unique (x,y)=(0,−2)
m=0alsoworks.m=0y=2x=0unique(x,y)=(0,2)
Answered by A5T last updated on 29/May/24
y=−mx^2 −2⇒(dy/dx)=−2mx  (d/dx)(4x^2 +y^2 )=(d/dx)(4)⇒8x+2y×(dy/dx)=0  ⇒(dy/dx)=((−4x)/y)  −2mx=((−4x)/y); x≠0⇒m=(2/y)  [y=0⇒no unique (x,y)∈R^2 ]  [y=0⇒x=+_− 1⇒0=−m−2⇒m=−2]  [x=0⇒y=−2]  As far as we want (x,y)∈R^2 , there would always  be unique solutions if y≠0  However,m=0 produces unique (x,y)∈C^2 .
y=mx22dydx=2mxddx(4x2+y2)=ddx(4)8x+2y×dydx=0dydx=4xy2mx=4xy;x0m=2y[y=0nounique(x,y)R2][y=0x=+10=m2m=2][x=0y=2]Asfaraswewant(x,y)R2,therewouldalwaysbeuniquesolutionsify0However,m=0producesunique(x,y)C2.
Commented by efronzo1 last updated on 29/May/24
sir y=−mx^2 −2
siry=mx22
Commented by A5T last updated on 29/May/24
Same thing,m could be negative or positive   or 0.
Samething,mcouldbenegativeorpositiveor0.

Leave a Reply

Your email address will not be published. Required fields are marked *