Menu Close

Given-p-q-r-and-s-real-positive-numbers-such-that-p-2-q-2-r-2-s-2-p-2-s-2-ps-q-2-r-2-qr-Find-pq-rs-ps-qr-




Question Number 207920 by efronzo1 last updated on 30/May/24
    Given p,q ,r and s real positive     numbers such that        { ((p^2 +q^2 = r^2 +s^2 )),((p^2 +s^2 −ps = q^2 +r^2 +qr.)) :}    Find  ((pq+rs)/(ps+qr)) .
Givenp,q,randsrealpositivenumberssuchthat{p2+q2=r2+s2p2+s2ps=q2+r2+qr.Findpq+rsps+qr.
Commented by Frix last updated on 30/May/24
answer is ((√3)/2)  p=a  q=((a(2b−1)(√3))/3)  r=((a(2−b)(√3))/3)  s=ab  a>0∧(1/2)<b<2 ⇔ p, q, r, s >0
answeris32p=aq=a(2b1)33r=a(2b)33s=aba>012<b<2p,q,r,s>0
Commented by efronzo1 last updated on 30/May/24
 how to get s=ab , q=((a(2b−1)(√3))/3)   r=((a(2−b)(√3))/3)
howtogets=ab,q=a(2b1)33r=a(2b)33
Answered by Frix last updated on 30/May/24
p=a  q=αa  r=βa  s=ab   { ((α^2 +1=b^2 +β^2 )),((b^2 −b+1=α^2 +αβ+β^2 )) :}  Subtracting & solving ⇒ β=((2b^2 −b−2α^2 )/α)  Insert above and factorise  (α^2 −b^2 )(α^2 −((4b^2 )/3)+((4b)/3)−(1/3))=0  ⇒  1. α=−b∧β=1       p=a∧q=−ab∧r=a∧s=ab  2. α=b∧β=−1       p=a∧q=ab∧r=−a∧s=ab  3. α=(((1−2b)(√3))/3)∧β=(((b−2)(√3))/3)       p=a∧q=((a(1−2b)(√3))/3)∧r=((a(b−2)(√3))/3)∧s=ab  4. α=(((2b−1)(√3))/3)∧β=(((2−b)(√3))/3)       p=a∧q=((a(2b−1)(√3))/3)∧r=((a(2−b)(√3))/3)∧s=ab  But p, q, r, s >0 ⇒ a, b >0  and only 4. leads to valid solutions  ⇒ ((pq+rs)/(ps+qr))=((√3)/2)
p=aq=αar=βas=ab{α2+1=b2+β2b2b+1=α2+αβ+β2Subtracting&solvingβ=2b2b2α2αInsertaboveandfactorise(α2b2)(α24b23+4b313)=01.α=bβ=1p=aq=abr=as=ab2.α=bβ=1p=aq=abr=as=ab3.α=(12b)33β=(b2)33p=aq=a(12b)33r=a(b2)33s=ab4.α=(2b1)33β=(2b)33p=aq=a(2b1)33r=a(2b)33s=abButp,q,r,s>0a,b>0andonly4.leadstovalidsolutionspq+rsps+qr=32
Answered by mr W last updated on 30/May/24
p^2 +q^2 =r^2 +s^2 =a^2 , say  ⇒p=a cos α, q=a sin α  ⇒r=a cos β, s=a sin β  with 0≤α, β≤(π/2)  if only positive numbers  a^2 cos^2  α+a^2 sin^2  β−a^2 cos α sin β=a^2 sin^2  α+a^2 cos^2  β+a^2 sin α cos β  cos 2α−cos 2β=sin (α+β)  cos^2  2α+cos^2  2β−2 cos 2α cos 2β=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 +2 sin 2α sin 2β−2 cos 2α cos 2β=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 −2 cos 2(α+β)=sin^2  (α+β)  2−(sin 2α+sin 2β)^2 −2+4 sin^2  (α+β)=sin^2  (α+β)  (sin 2α+sin 2β)^2 =3 sin^2  (α+β)  ⇒sin 2α+sin 2β=±(√3) sin (α+β)    ((pq+rs)/(ps+qr))  =((cos α sin α+cos β sin β)/(cos α sin β+sin α cos β))  =((sin 2α+sin 2β)/(2 sin (α+β)))  =±((√3)/2) ✓   (only ((√3)/2) if only positive numbers)
p2+q2=r2+s2=a2,sayp=acosα,q=asinαr=acosβ,s=asinβwith0α,βπ2ifonlypositivenumbersa2cos2α+a2sin2βa2cosαsinβ=a2sin2α+a2cos2β+a2sinαcosβcos2αcos2β=sin(α+β)cos22α+cos22β2cos2αcos2β=sin2(α+β)2(sin2α+sin2β)2+2sin2αsin2β2cos2αcos2β=sin2(α+β)2(sin2α+sin2β)22cos2(α+β)=sin2(α+β)2(sin2α+sin2β)22+4sin2(α+β)=sin2(α+β)(sin2α+sin2β)2=3sin2(α+β)sin2α+sin2β=±3sin(α+β)pq+rsps+qr=cosαsinα+cosβsinβcosαsinβ+sinαcosβ=sin2α+sin2β2sin(α+β)=±32(only32ifonlypositivenumbers)

Leave a Reply

Your email address will not be published. Required fields are marked *