Menu Close

help-1-x-ln-x-dx-




Question Number 207906 by nachosam last updated on 30/May/24
help  ∫_1 ^( ∞) x^(−ln(x)) dx
help1xln(x)dx
Answered by Berbere last updated on 30/May/24
∫_0 ^∞ (e^t )^((−t)) e^t dt  =∫_0 ^∞ e^(−t^2 +t) dt=∫_0 ^∞ e^(−(t−(1/2))^2 +(1/4)) dt  =e^(1/4) ∫_(−(1/2)) ^∞ e^(−x^2 ) dx=e^(1/4) ∫_0 ^∞ e^(−x^2 ) dx+e^(1/4) ∫_(−(1/2)) ^0 e^(−x^2 ) dx  A=e^(1/4) .((√π)/2)−e^(1/4) ((√π)/2)erf(−(1/2))  erf(x)=(2/( (√π)))∫_0 ^x e^(−t^2 ) dt⇒erf(−x)=−erf(x)  A=((√π)/2)e^(1/4) (1+erf((1/2)))
0(et)(t)etdt=0et2+tdt=0e(t12)2+14dt=e1412ex2dx=e140ex2dx+e14120ex2dxA=e14.π2e14π2erf(12)erf(x)=2π0xet2dterf(x)=erf(x)A=π2e14(1+erf(12))

Leave a Reply

Your email address will not be published. Required fields are marked *