Menu Close

Question-207919




Question Number 207919 by efronzo1 last updated on 30/May/24
    ⇃
$$\:\:\:\:\downharpoonleft\underline{\:} \\ $$
Commented by Frix last updated on 30/May/24
a^2 +b^2 +c^2 =0∨15
$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{0}\vee\mathrm{15} \\ $$
Answered by mr W last updated on 30/May/24
a=b=c=0 is a solution  for a≠0, b≠0, c≠0:  (ii)×(iii):  bc=bc(a+2)(a−2)  ⇒(a+2)(a−2)=1 ⇒a^2 =5  a=b^2 (a−2)  ⇒b^2 =(a/(a−2))=a(a+2)=a^2 +2a  c^2 =b^2 (a−2)^2 =a(a−2)=a^2 −2a  a^2 +b^2 +c^2 =a^2 +a^2 +2a+a^2 −2a=3a^2       =15  ⇒a^2 +b^2 +c^2 =0 or 15
$${a}={b}={c}=\mathrm{0}\:{is}\:{a}\:{solution} \\ $$$${for}\:{a}\neq\mathrm{0},\:{b}\neq\mathrm{0},\:{c}\neq\mathrm{0}: \\ $$$$\left({ii}\right)×\left({iii}\right): \\ $$$${bc}={bc}\left({a}+\mathrm{2}\right)\left({a}−\mathrm{2}\right) \\ $$$$\Rightarrow\left({a}+\mathrm{2}\right)\left({a}−\mathrm{2}\right)=\mathrm{1}\:\Rightarrow{a}^{\mathrm{2}} =\mathrm{5} \\ $$$${a}={b}^{\mathrm{2}} \left({a}−\mathrm{2}\right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{{a}}{{a}−\mathrm{2}}={a}\left({a}+\mathrm{2}\right)={a}^{\mathrm{2}} +\mathrm{2}{a} \\ $$$${c}^{\mathrm{2}} ={b}^{\mathrm{2}} \left({a}−\mathrm{2}\right)^{\mathrm{2}} ={a}\left({a}−\mathrm{2}\right)={a}^{\mathrm{2}} −\mathrm{2}{a} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{a}+{a}^{\mathrm{2}} −\mathrm{2}{a}=\mathrm{3}{a}^{\mathrm{2}} \\ $$$$\:\:\:\:=\mathrm{15} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{0}\:{or}\:\mathrm{15} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *