Menu Close

Find-lim-x-2-x-2-x-1-x-2-




Question Number 207943 by hardmath last updated on 31/May/24
Find:  lim_(x→2^− )  (((x + 2)∙(x + 1))/(∣x + 2∣))  =  ?
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\frac{\left(\mathrm{x}\:+\:\mathrm{2}\right)\centerdot\left(\mathrm{x}\:+\:\mathrm{1}\right)}{\mid\mathrm{x}\:+\:\mathrm{2}\mid}\:\:=\:\:? \\ $$
Commented by mr W last updated on 31/May/24
=(((2+2)(2+1))/(∣2+2∣))=3
$$=\frac{\left(\mathrm{2}+\mathrm{2}\right)\left(\mathrm{2}+\mathrm{1}\right)}{\mid\mathrm{2}+\mathrm{2}\mid}=\mathrm{3} \\ $$
Commented by mr W last updated on 01/Jun/24
f(2) exists. so lim_(x→2) f(x)=f(2).
$${f}\left(\mathrm{2}\right)\:{exists}.\:{so}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}{f}\left({x}\right)={f}\left(\mathrm{2}\right). \\ $$
Commented by hardmath last updated on 01/Jun/24
  Dear professor, could you please explain
$$ \\ $$Dear professor, could you please explain
Commented by mr W last updated on 01/Jun/24
maybe you wanted to ask  lim_(x→−2^− )  (((x + 2)∙(x + 1))/(∣x + 2∣))  =  ?
$${maybe}\:{you}\:{wanted}\:{to}\:{ask} \\ $$$$\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:\frac{\left(\mathrm{x}\:+\:\mathrm{2}\right)\centerdot\left(\mathrm{x}\:+\:\mathrm{1}\right)}{\mid\mathrm{x}\:+\:\mathrm{2}\mid}\:\:=\:\:? \\ $$
Commented by hardmath last updated on 01/Jun/24
Dear professor...  lim_(x→2^− )  ((x^4  − 16)/(∣x−2∣)) = ?
$$\mathrm{Dear}\:\mathrm{professor}… \\ $$$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{16}}{\mid\mathrm{x}−\mathrm{2}\mid}\:=\:? \\ $$
Commented by hardmath last updated on 01/Jun/24
  Right limit and left limit
$$ \\ $$Right limit and left limit
Commented by mr W last updated on 01/Jun/24
x→2^−  mean x<2, i.e. ∣x−2∣=2−x  lim_(x→2^− ) ((x^4 −16)/(∣x−2∣))  =lim_(x→2^− ) (((x−2)(x+2)(x^2 +4))/(2−x))  =lim_(x→2^− ) (((x+2)(x^2 +4))/(−1))  =(((2+2)(2^2 +4))/(−1))=−32
$${x}\rightarrow\mathrm{2}^{−} \:{mean}\:{x}<\mathrm{2},\:{i}.{e}.\:\mid{x}−\mathrm{2}\mid=\mathrm{2}−{x} \\ $$$$\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\frac{{x}^{\mathrm{4}} −\mathrm{16}}{\mid{x}−\mathrm{2}\mid} \\ $$$$=\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\frac{\left({x}−\mathrm{2}\right)\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{\mathrm{2}−{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\frac{\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{−\mathrm{1}} \\ $$$$=\frac{\left(\mathrm{2}+\mathrm{2}\right)\left(\mathrm{2}^{\mathrm{2}} +\mathrm{4}\right)}{−\mathrm{1}}=−\mathrm{32} \\ $$
Commented by hardmath last updated on 01/Jun/24
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by hardmath last updated on 01/Jun/24
but dear pfofessor    Why not -x-2 from the module for x<2 in the above exercise
$$\mathrm{but}\:\mathrm{dear}\:\mathrm{pfofessor} \\ $$$$ \\ $$Why not -x-2 from the module for x<2 in the above exercise
Commented by mr W last updated on 01/Jun/24
∣x−2∣=x−2 if x>2  ∣x−2∣=−(x−2)=2−x if x<2
$$\mid{x}−\mathrm{2}\mid={x}−\mathrm{2}\:{if}\:{x}>\mathrm{2} \\ $$$$\mid{x}−\mathrm{2}\mid=−\left({x}−\mathrm{2}\right)=\mathrm{2}−{x}\:{if}\:{x}<\mathrm{2} \\ $$
Commented by hardmath last updated on 02/Jun/24
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *