Menu Close

Find-the-value-of-0-2-dx-sin-6-x-cos-6-x-




Question Number 207949 by mnjuly1970 last updated on 31/May/24
                Find the value of :        𝛀 = ∫_0 ^( (𝛑/2))  (( dx)/(sin^6 x + cos^6 x)) = ?                      βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’
$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{Find}\:{the}\:{value}\:{of}\:: \\ $$$$ \\ $$$$\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \:\frac{\:\boldsymbol{{dx}}}{\boldsymbol{{sin}}^{\mathrm{6}} \boldsymbol{{x}}\:+\:\boldsymbol{{cos}}^{\mathrm{6}} \boldsymbol{{x}}}\:=\:?\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’ \\ $$
Answered by Frix last updated on 31/May/24
∫_0 ^(Ο€/2) (dx/(cos^6  x +sin^6  x))=2∫_0 ^(Ο€/4) (dx/(cos^6  x +sin^6  x))=  =16∫_0 ^(Ο€/4) (dx/(5+3cos 4x)) =^(t=tan 2x)  4∫_0 ^∞ (dt/(t^2 +4))=  =2[tan^(βˆ’1)  (t/2)]_0 ^∞ =Ο€
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{dx}}{\mathrm{cos}^{\mathrm{6}} \:{x}\:+\mathrm{sin}^{\mathrm{6}} \:{x}}=\mathrm{2}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{{dx}}{\mathrm{cos}^{\mathrm{6}} \:{x}\:+\mathrm{sin}^{\mathrm{6}} \:{x}}= \\ $$$$=\mathrm{16}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{{dx}}{\mathrm{5}+\mathrm{3cos}\:\mathrm{4}{x}}\:\overset{{t}=\mathrm{tan}\:\mathrm{2}{x}} {=}\:\mathrm{4}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{4}}= \\ $$$$=\mathrm{2}\left[\mathrm{tan}^{βˆ’\mathrm{1}} \:\frac{{t}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\infty} =\pi \\ $$
Commented by mnjuly1970 last updated on 01/Jun/24
thanks alot ali...
$${thanks}\:{alot}\:{ali}… \\ $$
Answered by Berbere last updated on 01/Jun/24
1=(sin^2 (x)+cos^2 (x))^3 =sin^6 (x)+cos^6 (x)+3sin^2 (x)cos^2 (x)(sin^2 (x)+cos^2 (x))  β‡’sin^6 (x)+cos^6 (x)=1βˆ’(3/4)(2sin(x)cos(x))^2   =1βˆ’((3sin^2 (2x))/4)=1βˆ’(3/8)(2sin^2 (2x)=1βˆ’(3/8)(1βˆ’cos(4x))  u=4x  Ξ©=2∫_0 ^(2Ο€) (du/(5+3cos(u)))  cos(u)=((e^(iu) +e^(βˆ’iu) )/2),z=e^(iu) β‡’dz=izdu⇔du=(dz/(iz))  β‡’2∫_C (dz/(iz(5+(3/2)(((z^2 +1)/z)))))=(4/i)∫_C (dz/((3z^2 +10z+3)))=Ξ©  3z^2 +10z+3=0β‡’z∈{βˆ’3,βˆ’(1/3)}  Ξ©=2iΟ€.(4/i)Res((1/((3z^2 +10z+3))),z=βˆ’(1/3)}=8Ο€.(1/(6z+10))=((8Ο€)/8)=Ο€
$$\mathrm{1}=\left({sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)\right)^{\mathrm{3}} ={sin}^{\mathrm{6}} \left({x}\right)+{cos}^{\mathrm{6}} \left({x}\right)+\mathrm{3}{sin}^{\mathrm{2}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right)\left({sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)\right) \\ $$$$\Rightarrow{sin}^{\mathrm{6}} \left({x}\right)+{cos}^{\mathrm{6}} \left({x}\right)=\mathrm{1}βˆ’\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{2}{sin}\left({x}\right){cos}\left({x}\right)\right)^{\mathrm{2}} \\ $$$$=\mathrm{1}βˆ’\frac{\mathrm{3}{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{\mathrm{4}}=\mathrm{1}βˆ’\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{2}{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)=\mathrm{1}βˆ’\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{1}βˆ’{cos}\left(\mathrm{4}{x}\right)\right)\right. \\ $$$${u}=\mathrm{4}{x} \\ $$$$\Omega=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{du}}{\mathrm{5}+\mathrm{3}{cos}\left({u}\right)} \\ $$$${cos}\left({u}\right)=\frac{{e}^{{iu}} +{e}^{βˆ’{iu}} }{\mathrm{2}},{z}={e}^{{iu}} \Rightarrow{dz}={izdu}\Leftrightarrow{du}=\frac{{dz}}{{iz}} \\ $$$$\Rightarrow\mathrm{2}\int_{{C}} \frac{{dz}}{{iz}\left(\mathrm{5}+\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{{z}^{\mathrm{2}} +\mathrm{1}}{{z}}\right)\right)}=\frac{\mathrm{4}}{{i}}\int_{{C}} \frac{{dz}}{\left(\mathrm{3}{z}^{\mathrm{2}} +\mathrm{10}{z}+\mathrm{3}\right)}=\Omega \\ $$$$\mathrm{3}{z}^{\mathrm{2}} +\mathrm{10}{z}+\mathrm{3}=\mathrm{0}\Rightarrow{z}\in\left\{βˆ’\mathrm{3},βˆ’\frac{\mathrm{1}}{\mathrm{3}}\right\} \\ $$$$\Omega=\mathrm{2}{i}\pi.\frac{\mathrm{4}}{{i}}{Res}\left(\frac{\mathrm{1}}{\left(\mathrm{3}{z}^{\mathrm{2}} +\mathrm{10}{z}+\mathrm{3}\right)},{z}=βˆ’\frac{\mathrm{1}}{\mathrm{3}}\right\}=\mathrm{8}\pi.\frac{\mathrm{1}}{\mathrm{6}{z}+\mathrm{10}}=\frac{\mathrm{8}\pi}{\mathrm{8}}=\pi \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 01/Jun/24
grateful sir...
$${grateful}\:{sir}… \\ $$
Commented by Berbere last updated on 01/Jun/24
Withe pleasur
$${Withe}\:{pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *