Menu Close

Question-207946




Question Number 207946 by cherokeesay last updated on 31/May/24
Answered by mr W last updated on 01/Jun/24
Commented by mr W last updated on 01/Jun/24
AC=(x/(cos θ))  BC=x tan θ  CD=x(1−tan θ)  ED=x(1−tan θ)tan θ  CE=((x(1−tan θ))/(cos θ))  EG=x−x(1−tan θ)tan θ=x(1−tan θ+tan^2  θ)  EF=(x/(cos θ))−((x(1−tan θ))/(cos θ))=((x tan θ)/(cos θ))  5=(1/2)×(x/(cos θ))×((x(1−tan θ))/(cos θ))  ⇒10=x^2 (1−tan θ)(1+tan^2  θ)   ...(i)  3=((sin ((π/2)−θ))/2)×x(1−tan θ+tan^2  θ)×((x tan θ)/(cos θ))  ⇒6=x^2 (1−tan θ+tan^2  θ)tan θ   ...(ii)  (i)/(ii):  (5/3)=(((1−tan θ)(1+tan^2  θ))/((1−tan θ+tan^2  θ)tan θ))  let t=tan θ  8t^3 −8t^2 +8t−3=0  (2t−1)(4t^2 −2t+3)=0  ⇒2t−1=0 ⇒t=(1/2)  10=x^2 (1−(1/2))(1+(1/4))  ⇒x^2 =16 ⇒x=4 ✓
$${AC}=\frac{{x}}{\mathrm{cos}\:\theta} \\ $$$${BC}={x}\:\mathrm{tan}\:\theta \\ $$$${CD}={x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right) \\ $$$${ED}={x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\mathrm{tan}\:\theta \\ $$$${CE}=\frac{{x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)}{\mathrm{cos}\:\theta} \\ $$$${EG}={x}−{x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\mathrm{tan}\:\theta={x}\left(\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}^{\mathrm{2}} \:\theta\right) \\ $$$${EF}=\frac{{x}}{\mathrm{cos}\:\theta}−\frac{{x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)}{\mathrm{cos}\:\theta}=\frac{{x}\:\mathrm{tan}\:\theta}{\mathrm{cos}\:\theta} \\ $$$$\mathrm{5}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{{x}}{\mathrm{cos}\:\theta}×\frac{{x}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)}{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\mathrm{10}={x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{tan}\:\theta\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\:\:\:…\left({i}\right) \\ $$$$\mathrm{3}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)}{\mathrm{2}}×{x}\left(\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}^{\mathrm{2}} \:\theta\right)×\frac{{x}\:\mathrm{tan}\:\theta}{\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\mathrm{6}={x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\mathrm{tan}\:\theta\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\frac{\mathrm{5}}{\mathrm{3}}=\frac{\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right)}{\left(\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}^{\mathrm{2}} \:\theta\right)\mathrm{tan}\:\theta} \\ $$$${let}\:{t}=\mathrm{tan}\:\theta \\ $$$$\mathrm{8}{t}^{\mathrm{3}} −\mathrm{8}{t}^{\mathrm{2}} +\mathrm{8}{t}−\mathrm{3}=\mathrm{0} \\ $$$$\left(\mathrm{2}{t}−\mathrm{1}\right)\left(\mathrm{4}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{t}−\mathrm{1}=\mathrm{0}\:\Rightarrow{t}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{10}={x}^{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{16}\:\Rightarrow{x}=\mathrm{4}\:\checkmark \\ $$
Commented by mnjuly1970 last updated on 01/Jun/24
 ⋛
$$\:\underline{\underbrace{\lesseqgtr}} \\ $$
Commented by Tawa11 last updated on 21/Jun/24
Weldone sir
$$\mathrm{Weldone}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *