Menu Close

find-4-dx-x-1-3-x-3-5-




Question Number 208062 by mathzup last updated on 03/Jun/24
find  ∫_4 ^∞     (dx/((x+1)^3 (x−3)^5 ))
$${find}\:\:\int_{\mathrm{4}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} } \\ $$
Answered by Frix last updated on 03/Jun/24
Use Ostrogradski′s Method (search it on  the www)  ∫(dx/((x+1)^3 (x−3)^5 ))=((15)/(4096))∫(dx/((x+1)(x+3)))+  +((15x^5 −135x^4 +350x^3 +10x^2 −877x+125)/(4096(x+1)^2 (x−3)^4 ))=  =((15ln ∣((x−3)/(x+1))∣)/(16384))+((15x^5 −135x^4 +350x^3 +10x^2 −877x+125)/(4096(x+1)^2 (x−3)^4 ))+C  ⇒  Answer is ((23)/(102400))+((15ln 5)/(16374))
$$\mathrm{Use}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\:\left(\mathrm{search}\:\mathrm{it}\:\mathrm{on}\right. \\ $$$$\left.\mathrm{the}\:{www}\right) \\ $$$$\int\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}−\mathrm{3}\right)^{\mathrm{5}} }=\frac{\mathrm{15}}{\mathrm{4096}}\int\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)}+ \\ $$$$+\frac{\mathrm{15}{x}^{\mathrm{5}} −\mathrm{135}{x}^{\mathrm{4}} +\mathrm{350}{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} −\mathrm{877}{x}+\mathrm{125}}{\mathrm{4096}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{4}} }= \\ $$$$=\frac{\mathrm{15ln}\:\mid\frac{{x}−\mathrm{3}}{{x}+\mathrm{1}}\mid}{\mathrm{16384}}+\frac{\mathrm{15}{x}^{\mathrm{5}} −\mathrm{135}{x}^{\mathrm{4}} +\mathrm{350}{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} −\mathrm{877}{x}+\mathrm{125}}{\mathrm{4096}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{4}} }+{C} \\ $$$$\Rightarrow \\ $$$$\mathrm{Answer}\:\mathrm{is}\:\frac{\mathrm{23}}{\mathrm{102400}}+\frac{\mathrm{15ln}\:\mathrm{5}}{\mathrm{16374}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *