Menu Close

Sketch-the-curve-y-x-3-a-Find-the-equation-of-the-tangent-to-the-curve-at-A-1-1-b-Find-the-coordinates-of-point-B-where-the-tangent-meets-the-curve-again-c-Calculate-the-area-between-the




Question Number 208052 by necx122 last updated on 03/Jun/24
Sketch the curve y = x^3 .  (a) Find the equation of the tangent  to the curve at A(1,1).  (b) Find the coordinates of point B,  where the tangent meets the curve again.  (c) Calculate the area between the  tangent B and the arc AB of the curve.
$${Sketch}\:{the}\:{curve}\:{y}\:=\:{x}^{\mathrm{3}} . \\ $$$$\left({a}\right)\:{Find}\:{the}\:{equation}\:{of}\:{the}\:{tangent} \\ $$$${to}\:{the}\:{curve}\:{at}\:{A}\left(\mathrm{1},\mathrm{1}\right). \\ $$$$\left({b}\right)\:{Find}\:{the}\:{coordinates}\:{of}\:{point}\:{B}, \\ $$$${where}\:{the}\:{tangent}\:{meets}\:{the}\:{curve}\:{again}. \\ $$$$\left({c}\right)\:{Calculate}\:{the}\:{area}\:{between}\:{the} \\ $$$${tangent}\:{B}\:{and}\:{the}\:{arc}\:{AB}\:{of}\:{the}\:{curve}. \\ $$
Commented by Frix last updated on 03/Jun/24
Tangent t: y=ax+b  f: y=x^3  ⇒ f′: y=3x^2   P∈f: P= ((p),(p^3 ) )  P∈t: p^3 =ap+b but a=3p^2  ⇒ b=−2p^3  ⇒  t: y=3p^2 x−2p^3     f(x)=x^3   t(x)=3p^2 x−2p^3   d(x)=f(x)−t(x)=x^3 −3p^2 x+2p^3   d(x)=(x−p)^2 (x+2p)  This has a double zero at x=p and a single  zero at x=−2p. Its extreme is at x=−p  with d(−p)=4p^3  ⇒ for p<0 we have a  local min, for p>0 a local max ⇒  4p^3 ≤d(x)≤0; p<0∧p≤x≤−2p  ⇒ Area is  −∫_p ^(−2p) d(x)dx=∫_(−2p) ^p d(x)dx  0≤d(x)≤4p^3 ; p>0∧−2p≤x≤p  ⇒ Area is ∫_(−2p) ^p d(x)dx  ⇒ Area for p≠0 is always ∫_(−2p) ^p d(x)dx
$$\mathrm{Tangent}\:{t}:\:{y}={ax}+{b} \\ $$$${f}:\:{y}={x}^{\mathrm{3}} \:\Rightarrow\:{f}':\:{y}=\mathrm{3}{x}^{\mathrm{2}} \\ $$$${P}\in{f}:\:{P}=\begin{pmatrix}{{p}}\\{{p}^{\mathrm{3}} }\end{pmatrix} \\ $$$${P}\in{t}:\:{p}^{\mathrm{3}} ={ap}+{b}\:\mathrm{but}\:{a}=\mathrm{3}{p}^{\mathrm{2}} \:\Rightarrow\:{b}=−\mathrm{2}{p}^{\mathrm{3}} \:\Rightarrow \\ $$$${t}:\:{y}=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$$ \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} \\ $$$${t}\left({x}\right)=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$${d}\left({x}\right)={f}\left({x}\right)−{t}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} {x}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$${d}\left({x}\right)=\left({x}−{p}\right)^{\mathrm{2}} \left({x}+\mathrm{2}{p}\right) \\ $$$$\mathrm{This}\:\mathrm{has}\:\mathrm{a}\:\mathrm{double}\:\mathrm{zero}\:\mathrm{at}\:{x}={p}\:\mathrm{and}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{zero}\:\mathrm{at}\:{x}=−\mathrm{2}{p}.\:\mathrm{Its}\:\mathrm{extreme}\:\mathrm{is}\:\mathrm{at}\:{x}=−{p} \\ $$$$\mathrm{with}\:{d}\left(−{p}\right)=\mathrm{4}{p}^{\mathrm{3}} \:\Rightarrow\:\mathrm{for}\:{p}<\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a} \\ $$$$\mathrm{local}\:\mathrm{min},\:\mathrm{for}\:{p}>\mathrm{0}\:\mathrm{a}\:\mathrm{local}\:\mathrm{max}\:\Rightarrow \\ $$$$\mathrm{4}{p}^{\mathrm{3}} \leqslant{d}\left({x}\right)\leqslant\mathrm{0};\:{p}<\mathrm{0}\wedge{p}\leqslant{x}\leqslant−\mathrm{2}{p} \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{is}\:\:−\underset{{p}} {\overset{−\mathrm{2}{p}} {\int}}{d}\left({x}\right){dx}=\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$$$\mathrm{0}\leqslant{d}\left({x}\right)\leqslant\mathrm{4}{p}^{\mathrm{3}} ;\:{p}>\mathrm{0}\wedge−\mathrm{2}{p}\leqslant{x}\leqslant{p} \\ $$$$\Rightarrow\:{A}\mathrm{rea}\:\mathrm{is}\:\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{for}\:{p}\neq\mathrm{0}\:\mathrm{is}\:\mathrm{always}\:\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$
Commented by Frix last updated on 03/Jun/24
y=x^3   y′=3x^2   Tangent at x=p: y=3p^2 x−2p^3   Intersection  x^3 −(3p^2 x−2p^3 )=0  (x−p)^2 (x+2p)=0  x_1 =p (obvious)  x_2 =−2p  The area is  ∫_(−2p) ^p (x^3 −(3p^2 x−2p^3 ))dx=((27p^4 )/4)
$${y}={x}^{\mathrm{3}} \\ $$$${y}'=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\mathrm{Tangent}\:\mathrm{at}\:{x}={p}:\:{y}=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$$\mathrm{Intersection} \\ $$$${x}^{\mathrm{3}} −\left(\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} \left({x}+\mathrm{2}{p}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} ={p}\:\left(\mathrm{obvious}\right) \\ $$$${x}_{\mathrm{2}} =−\mathrm{2}{p} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{is} \\ $$$$\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}\left({x}^{\mathrm{3}} −\left(\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \right)\right){dx}=\frac{\mathrm{27}{p}^{\mathrm{4}} }{\mathrm{4}} \\ $$
Commented by necx122 last updated on 03/Jun/24
Thank you sir frix. However, I′m  bothered about how you came about  the y-intercept for the tangent as −2p^3 .  Also, in sketching the curve and   calculating the area bounded by the  arent we supposed to calculate for all  possible regions both above and below  the x-axis which may indicate a different  value for the area bounded by the curve  and the line.  Thank you for your help. I always   appreciate.
$${Thank}\:{you}\:{sir}\:{frix}.\:{However},\:{I}'{m} \\ $$$${bothered}\:{about}\:{how}\:{you}\:{came}\:{about} \\ $$$${the}\:{y}-{intercept}\:{for}\:{the}\:{tangent}\:{as}\:−\mathrm{2}{p}^{\mathrm{3}} . \\ $$$${Also},\:{in}\:{sketching}\:{the}\:{curve}\:{and}\: \\ $$$${calculating}\:{the}\:{area}\:{bounded}\:{by}\:{the} \\ $$$${arent}\:{we}\:{supposed}\:{to}\:{calculate}\:{for}\:{all} \\ $$$${possible}\:{regions}\:{both}\:{above}\:{and}\:{below} \\ $$$${the}\:{x}-{axis}\:{which}\:{may}\:{indicate}\:{a}\:{different} \\ $$$${value}\:{for}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$${and}\:{the}\:{line}. \\ $$$${Thank}\:{you}\:{for}\:{your}\:{help}.\:{I}\:{always}\: \\ $$$${appreciate}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *