Sketch-the-curve-y-x-3-a-Find-the-equation-of-the-tangent-to-the-curve-at-A-1-1-b-Find-the-coordinates-of-point-B-where-the-tangent-meets-the-curve-again-c-Calculate-the-area-between-the Tinku Tara June 3, 2024 Integration 0 Comments FacebookTweetPin Question Number 208052 by necx122 last updated on 03/Jun/24 Sketchthecurvey=x3.(a)FindtheequationofthetangenttothecurveatA(1,1).(b)FindthecoordinatesofpointB,wherethetangentmeetsthecurveagain.(c)CalculatetheareabetweenthetangentBandthearcABofthecurve. Commented by Frix last updated on 03/Jun/24 Tangentt:y=ax+bf:y=x3⇒f′:y=3x2P∈f:P=(pp3)P∈t:p3=ap+bbuta=3p2⇒b=−2p3⇒t:y=3p2x−2p3f(x)=x3t(x)=3p2x−2p3d(x)=f(x)−t(x)=x3−3p2x+2p3d(x)=(x−p)2(x+2p)Thishasadoublezeroatx=pandasinglezeroatx=−2p.Itsextremeisatx=−pwithd(−p)=4p3⇒forp<0wehavealocalmin,forp>0alocalmax⇒4p3⩽d(x)⩽0;p<0∧p⩽x⩽−2p⇒Areais−∫−2ppd(x)dx=∫p−2pd(x)dx0⩽d(x)⩽4p3;p>0∧−2p⩽x⩽p⇒Areais∫p−2pd(x)dx⇒Areaforp≠0isalways∫p−2pd(x)dx Commented by Frix last updated on 03/Jun/24 y=x3y′=3x2Tangentatx=p:y=3p2x−2p3Intersectionx3−(3p2x−2p3)=0(x−p)2(x+2p)=0x1=p(obvious)x2=−2pTheareais∫p−2p(x3−(3p2x−2p3))dx=27p44 Commented by necx122 last updated on 03/Jun/24 Thankyousirfrix.However,I′mbotheredabouthowyoucameaboutthey−interceptforthetangentas−2p3.Also,insketchingthecurveandcalculatingtheareaboundedbythearentwesupposedtocalculateforallpossibleregionsbothaboveandbelowthex−axiswhichmayindicateadifferentvaluefortheareaboundedbythecurveandtheline.Thankyouforyourhelp.Ialwaysappreciate. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 4-10-n-52-3-The-numbers-are-38-in-total-Find-n-Next Next post: x-3-5-y-5-3-5-x-y-11-x-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.