Question Number 208052 by necx122 last updated on 03/Jun/24
$${Sketch}\:{the}\:{curve}\:{y}\:=\:{x}^{\mathrm{3}} . \\ $$$$\left({a}\right)\:{Find}\:{the}\:{equation}\:{of}\:{the}\:{tangent} \\ $$$${to}\:{the}\:{curve}\:{at}\:{A}\left(\mathrm{1},\mathrm{1}\right). \\ $$$$\left({b}\right)\:{Find}\:{the}\:{coordinates}\:{of}\:{point}\:{B}, \\ $$$${where}\:{the}\:{tangent}\:{meets}\:{the}\:{curve}\:{again}. \\ $$$$\left({c}\right)\:{Calculate}\:{the}\:{area}\:{between}\:{the} \\ $$$${tangent}\:{B}\:{and}\:{the}\:{arc}\:{AB}\:{of}\:{the}\:{curve}. \\ $$
Commented by Frix last updated on 03/Jun/24
$$\mathrm{Tangent}\:{t}:\:{y}={ax}+{b} \\ $$$${f}:\:{y}={x}^{\mathrm{3}} \:\Rightarrow\:{f}':\:{y}=\mathrm{3}{x}^{\mathrm{2}} \\ $$$${P}\in{f}:\:{P}=\begin{pmatrix}{{p}}\\{{p}^{\mathrm{3}} }\end{pmatrix} \\ $$$${P}\in{t}:\:{p}^{\mathrm{3}} ={ap}+{b}\:\mathrm{but}\:{a}=\mathrm{3}{p}^{\mathrm{2}} \:\Rightarrow\:{b}=−\mathrm{2}{p}^{\mathrm{3}} \:\Rightarrow \\ $$$${t}:\:{y}=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$$ \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} \\ $$$${t}\left({x}\right)=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$${d}\left({x}\right)={f}\left({x}\right)−{t}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} {x}+\mathrm{2}{p}^{\mathrm{3}} \\ $$$${d}\left({x}\right)=\left({x}−{p}\right)^{\mathrm{2}} \left({x}+\mathrm{2}{p}\right) \\ $$$$\mathrm{This}\:\mathrm{has}\:\mathrm{a}\:\mathrm{double}\:\mathrm{zero}\:\mathrm{at}\:{x}={p}\:\mathrm{and}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{zero}\:\mathrm{at}\:{x}=−\mathrm{2}{p}.\:\mathrm{Its}\:\mathrm{extreme}\:\mathrm{is}\:\mathrm{at}\:{x}=−{p} \\ $$$$\mathrm{with}\:{d}\left(−{p}\right)=\mathrm{4}{p}^{\mathrm{3}} \:\Rightarrow\:\mathrm{for}\:{p}<\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mathrm{a} \\ $$$$\mathrm{local}\:\mathrm{min},\:\mathrm{for}\:{p}>\mathrm{0}\:\mathrm{a}\:\mathrm{local}\:\mathrm{max}\:\Rightarrow \\ $$$$\mathrm{4}{p}^{\mathrm{3}} \leqslant{d}\left({x}\right)\leqslant\mathrm{0};\:{p}<\mathrm{0}\wedge{p}\leqslant{x}\leqslant−\mathrm{2}{p} \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{is}\:\:−\underset{{p}} {\overset{−\mathrm{2}{p}} {\int}}{d}\left({x}\right){dx}=\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$$$\mathrm{0}\leqslant{d}\left({x}\right)\leqslant\mathrm{4}{p}^{\mathrm{3}} ;\:{p}>\mathrm{0}\wedge−\mathrm{2}{p}\leqslant{x}\leqslant{p} \\ $$$$\Rightarrow\:{A}\mathrm{rea}\:\mathrm{is}\:\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$$$\Rightarrow\:\mathrm{Area}\:\mathrm{for}\:{p}\neq\mathrm{0}\:\mathrm{is}\:\mathrm{always}\:\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}{d}\left({x}\right){dx} \\ $$
Commented by Frix last updated on 03/Jun/24
$${y}={x}^{\mathrm{3}} \\ $$$${y}'=\mathrm{3}{x}^{\mathrm{2}} \\ $$$$\mathrm{Tangent}\:\mathrm{at}\:{x}={p}:\:{y}=\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \\ $$$$\mathrm{Intersection} \\ $$$${x}^{\mathrm{3}} −\left(\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} \left({x}+\mathrm{2}{p}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} ={p}\:\left(\mathrm{obvious}\right) \\ $$$${x}_{\mathrm{2}} =−\mathrm{2}{p} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{is} \\ $$$$\underset{−\mathrm{2}{p}} {\overset{{p}} {\int}}\left({x}^{\mathrm{3}} −\left(\mathrm{3}{p}^{\mathrm{2}} {x}−\mathrm{2}{p}^{\mathrm{3}} \right)\right){dx}=\frac{\mathrm{27}{p}^{\mathrm{4}} }{\mathrm{4}} \\ $$
Commented by necx122 last updated on 03/Jun/24
$${Thank}\:{you}\:{sir}\:{frix}.\:{However},\:{I}'{m} \\ $$$${bothered}\:{about}\:{how}\:{you}\:{came}\:{about} \\ $$$${the}\:{y}-{intercept}\:{for}\:{the}\:{tangent}\:{as}\:−\mathrm{2}{p}^{\mathrm{3}} . \\ $$$${Also},\:{in}\:{sketching}\:{the}\:{curve}\:{and}\: \\ $$$${calculating}\:{the}\:{area}\:{bounded}\:{by}\:{the} \\ $$$${arent}\:{we}\:{supposed}\:{to}\:{calculate}\:{for}\:{all} \\ $$$${possible}\:{regions}\:{both}\:{above}\:{and}\:{below} \\ $$$${the}\:{x}-{axis}\:{which}\:{may}\:{indicate}\:{a}\:{different} \\ $$$${value}\:{for}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve} \\ $$$${and}\:{the}\:{line}. \\ $$$${Thank}\:{you}\:{for}\:{your}\:{help}.\:{I}\:{always}\: \\ $$$${appreciate}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$