Menu Close

5-x-1-3-x-2-4-lt-0-




Question Number 208076 by hardmath last updated on 04/Jun/24
(5 − ∣x∣)^(− (1/3))  (x^2  − 4) < 0
(5x)13(x24)<0
Answered by TonyCWX08 last updated on 04/Jun/24
This inequality are defined when x∈⟨−5,5⟩  Two Possible Cases  Case 1:  (5−∣x∣)^(−(1/3)) <0  x^2 −4>0    (1/(5−∣x∣))<0  x^2 >4    x∈⟨−∞,−5⟩∪⟨5,∞⟩  x∈⟨−∞,−2⟩∪⟨2,∞⟩    Intersection = ⟨−∞,−5⟩∪⟨5,∞⟩    Case 2  (5−∣x∣)^(−(1/3)) >0  x^2 −4<0    (1/(5−∣x∣))>0  x^2 <4    x∈⟨−5,5⟩  x∈⟨−2,2⟩    Intersection = ⟨−2,2⟩    Total Intersection= ⟨−∞,−5⟩∪⟨−2,2⟩∪⟨5,∞⟩  Defined range = x∈⟨−5,5⟩  Solution : x∈⟨−2,2⟩
Thisinequalityaredefinedwhenx5,5TwoPossibleCasesCase1:(5x)13<0x24>015x<0x2>4x,55,x,22,Intersection=,55,Case2(5x)13>0x24<015x>0x2<4x5,5x2,2Intersection=2,2TotalIntersection=,52,25,Definedrange=x5,5Solution:x2,2
Answered by lepuissantcedricjunior last updated on 04/Jun/24
   x^2 −4=0 ou 5−∣x∣=0  =>x=∓2 ou  { ((5+x=0)),((5−x=0)) :}=> { ((x=−5)),((x=5)) :}  S_R ={−5;−2;2;5}
x24=0ou5x∣=0=>x=2ou{5+x=05x=0=>{x=5x=5SR={5;2;2;5}

Leave a Reply

Your email address will not be published. Required fields are marked *