Menu Close

Find-sin-2x-pi-4-




Question Number 208075 by hardmath last updated on 04/Jun/24
Find:   ∫ sin (2x − (π/4)) = ?
$$\mathrm{Find}:\:\:\:\int\:\mathrm{sin}\:\left(\mathrm{2x}\:−\:\frac{\pi}{\mathrm{4}}\right)\:=\:? \\ $$
Answered by TonyCWX08 last updated on 04/Jun/24
sin(2x−(π/4))  =sin(2x)cos((π/4))−sin((π/4))cos(2x)  =((√2)/2)(sin(2x)−cos(2x))    ((√2)/2)∫ sin(2x)−cos(2x) dx  =((√2)/2)(−((cos(2x)+sin(2x))/2))+c  =−(((√2)(cos(x)+sin(x)))/4)+c
$${sin}\left(\mathrm{2}{x}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$={sin}\left(\mathrm{2}{x}\right){cos}\left(\frac{\pi}{\mathrm{4}}\right)−{sin}\left(\frac{\pi}{\mathrm{4}}\right){cos}\left(\mathrm{2}{x}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left({sin}\left(\mathrm{2}{x}\right)−{cos}\left(\mathrm{2}{x}\right)\right) \\ $$$$ \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\:{sin}\left(\mathrm{2}{x}\right)−{cos}\left(\mathrm{2}{x}\right)\:{dx} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(−\frac{{cos}\left(\mathrm{2}{x}\right)+{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)+{c} \\ $$$$=−\frac{\sqrt{\mathrm{2}}\left({cos}\left({x}\right)+{sin}\left({x}\right)\right)}{\mathrm{4}}+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *