Menu Close

Question-208149




Question Number 208149 by mnjuly1970 last updated on 06/Jun/24
Answered by A5T last updated on 06/Jun/24
⌊2x^2 ⌋>2x^2 −1⇒x−⌊2x^2 ⌋<1−2x^2 +x  Suppose D_f ,R_f ⊆R  1−2x^2 +x<0⇒x>1 or x<−(1/2)  If R_f ⊆R, then f(x) is undefined for x<((−1)/2)∪x>1  when x=((−1)/2),1;f(x) is undefined in R  ((−1)/2)<x<0⇒∣x∣<(1/2)⇒0<x^2 <(1/4)⇒0<2x^2 <(1/2)  ⇒⌊2x^2 ⌋=0⇒f(x)=(√(x−0))=f(x)=(√x)  which is undefined for ((−1)/2)<x<0    when x=0;f(x)=0  when 0<x<(1/( (√2))); ⌊2x^2 ⌋=0⇒f(x)=(√x)∈(0,((8)^(1/4) /2))  when x=(1/( (√2)));f(x) is undefined in R  when (1/( (√2)))<x<1, ⌊2x^2 ⌋=1⇒f(x)=(√(x−1))  which is undefined in R since (1/( (√2)))<x<1.  So,for D_f ,R_f ⊆R, R_f =[0,((8)^(1/4) /2)),D_f =[0,(1/( (√2))))
2x2>2x21x2x2<12x2+xSupposeDf,RfR12x2+x<0x>1orx<12IfRfR,thenf(x)isundefinedforx<12x>1whenx=12,1;f(x)isundefinedinR12<x<0⇒∣x∣<120<x2<140<2x2<122x2=0f(x)=x0=f(x)=xwhichisundefinedfor12<x<0whenx=0;f(x)=0when0<x<12;2x2=0f(x)=x(0,842)whenx=12;f(x)isundefinedinRwhen12<x<1,2x2=1f(x)=x1whichisundefinedinRsince12<x<1.So,forDf,RfR,Rf=[0,842),Df=[0,12)
Commented by mnjuly1970 last updated on 06/Jun/24
Commented by A5T last updated on 06/Jun/24
Do you have the answer? Is it correct?
Doyouhavetheanswer?Isitcorrect?
Commented by mnjuly1970 last updated on 07/Jun/24
yes sir A5T
yessirA5T
Answered by MM42 last updated on 06/Jun/24
D=[0 , (1/( (√2))))   &  R=[0 , (1/( (2)^(1/4) )))
D=[0,12)&R=[0,124)
Commented by MM42 last updated on 06/Jun/24
if  x<0⇒x−⌊2x^2 ⌋<0⇒∉ D_f   if   (√((n/2) ))≤x<(√((n+1)/2)) ⇒x<n   ; ∀n∈N  ⇒n≤2x^2 <n+1⇒⌊2x^2 ⌋=n  ⇒x−⌊2x^2 ⌋<0⇒∉ D_f   f(0)=0  & lim_(x→(1/( (√2)))^ ) f(x)=(1/( (2)^(1/4) ))  ⇒R_f =[0,(1/( (2)^(1/4) )))
ifx<0x2x2<0⇒∉Dfifn2x<n+12x<n;nNn2x2<n+12x2=nx2x2<0⇒∉Dff(0)=0&limx12f(x)=124Rf=[0,124)
Answered by mnjuly1970 last updated on 07/Jun/24
            x−⌊2x^2 ⌋≥0 ⇒ x ≥ ⌊ 2x^2 ⌋≥0 (★)         −−−−−−              ⌊ 2x^2 ⌋=k ⇒^(k∈Z^(≥0) ) k ≤ 2x^2 < k+1                   from (★):  x ≥ k ⇒^(x≥0) 2x^2 ≥ 2k^2 (★★)        −−−−−−      from(★),(★★)⇒^(★∩★★={})  :    2k^2  ≥ k+1           k ≥ 1   (■)        complement of(■) is our purpose  (★★★)         k =0 ⇒  0 ≤ 2x^2  < 1 ⇒  { ((D_f = 0≤x <(1/( (√2))))),((   ⌊2x^2 ⌋=0 ⇒ f(x)=(√x))) :}                 ⇒   { ((  0≤x <(1/( (√2))))),(( f(x)=(√x) ⇒ R_f  = [0 , (1/( (2)^(1/4) )) ))) :}
x2x20x2x20()2x2=kkZ0k2x2<k+1from():xkx02x22k2()from(),()={}:2k2k+1k1(◼)complementof(◼)isourpurpose()k=002x2<1{Df=0x<122x2=0f(x)=x{0x<12f(x)=xRf=[0,124)

Leave a Reply

Your email address will not be published. Required fields are marked *