Menu Close

Find-the-value-of-the-folloing-integral-determinant-0-2-1-1-cosx-1-3-dx-




Question Number 208176 by mnjuly1970 last updated on 07/Jun/24
       Find the value of the         folloing integral.            determinant (((   𝛀=∫_0 ^( (𝛑/2))  (( 1)/(1 + (( cosx))^(1/3) )) dx = ?  )))
Findthevalueofthefolloingintegral.Ω=0π211+cosx3dx=?
Commented by Frix last updated on 07/Jun/24
See question 208140
Seequestion208140
Answered by Berbere last updated on 07/Jun/24
(1/(1+((cos(x)))^(1/3) ))=Σ(−1)^n cos^(n/3) (x)  Ω=Σ_(n≥0) ∫_0 ^(π/2) (−1)^n cos^(2((n/6)+(1/2))−1) (x)sin^(2((1/2))−1) (x)dx  =Σ_(n≥0) (((−1)^n )/2)β((n/6)+(1/2),(1/2))=Σ_(n≥0) (((−1)^n )/2)((Γ((n/6)+(1/2))Γ((1/2)))/(Γ((n/6)+1)))  N=∪_(k∈{0,1,2,3,4,5)) (6N+k)  =Σ_(k=0) ^5 Σ_(m=0) ^∞ (((−1)^(6m+k) )/2).((Γ(m+(k/6)+(1/2)))/(Γ(m+(k/6)+1))) Γ((1/2))  =Γ((1/2))Σ_(k=0) ^5 (((−1)^k )/2)Σ_(m≥0) (((Γ(m+(k/6)+(1/2)))/(Γ(m)))/((Γ(m+(k/6)+1))/(Γ(m)))).Γ(m+1).(1^m /(m!))  =((√π)/2)Σ_(k=0) ^5   _2 F_1 ((k/6)+(1/2),1;(k/6)+1;[1])
11+cos(x)3=Σ(1)ncosn3(x)Ω=n00π2(1)ncos2(n6+12)1(x)sin2(12)1(x)dx=n0(1)n2β(n6+12,12)=n0(1)n2Γ(n6+12)Γ(12)Γ(n6+1)N=k{0,1,2,3,4,5)(6N+k)=5k=0m=0(1)6m+k2.Γ(m+k6+12)Γ(m+k6+1)Γ(12)=Γ(12)5k=0(1)k2m0Γ(m+k6+12)Γ(m)Γ(m+k6+1)Γ(m).Γ(m+1).1mm!=π25k=02F1(k6+12,1;k6+1;[1])
Commented by Frix last updated on 07/Jun/24
Nice!
Nice!
Commented by Berbere last updated on 10/Jun/24
thank You sir Have  a nice Day
thankYousirHaveaniceDay

Leave a Reply

Your email address will not be published. Required fields are marked *