Question Number 208176 by mnjuly1970 last updated on 07/Jun/24

Commented by Frix last updated on 07/Jun/24

Answered by Berbere last updated on 07/Jun/24
![(1/(1+((cos(x)))^(1/3) ))=Σ(−1)^n cos^(n/3) (x) Ω=Σ_(n≥0) ∫_0 ^(π/2) (−1)^n cos^(2((n/6)+(1/2))−1) (x)sin^(2((1/2))−1) (x)dx =Σ_(n≥0) (((−1)^n )/2)β((n/6)+(1/2),(1/2))=Σ_(n≥0) (((−1)^n )/2)((Γ((n/6)+(1/2))Γ((1/2)))/(Γ((n/6)+1))) N=∪_(k∈{0,1,2,3,4,5)) (6N+k) =Σ_(k=0) ^5 Σ_(m=0) ^∞ (((−1)^(6m+k) )/2).((Γ(m+(k/6)+(1/2)))/(Γ(m+(k/6)+1))) Γ((1/2)) =Γ((1/2))Σ_(k=0) ^5 (((−1)^k )/2)Σ_(m≥0) (((Γ(m+(k/6)+(1/2)))/(Γ(m)))/((Γ(m+(k/6)+1))/(Γ(m)))).Γ(m+1).(1^m /(m!)) =((√π)/2)Σ_(k=0) ^5 _2 F_1 ((k/6)+(1/2),1;(k/6)+1;[1])](https://www.tinkutara.com/question/Q208181.png)
Commented by Frix last updated on 07/Jun/24

Commented by Berbere last updated on 10/Jun/24
