Menu Close

I-n-0-1-1-x-2-n-dx-prove-that-n-1-I-n-n-pi-




Question Number 208194 by universe last updated on 07/Jun/24
        I_n  =  ∫_(0 ) ^∞ (1/((1+x^2 )^n ))dx    prove that  Σ_(n=1) ^∞ (I_n /n)  =  π
In=01(1+x2)ndxprovethatn=1Inn=π
Answered by Berbere last updated on 07/Jun/24
I_n =∫_0 ^∞ ((y^(−(1/2)) dy)/(2(1+y)^n ))=(1/2)∫_0 ^∞ (y^((1/2)−1) /((1+y)^((1/2)+1−(1/2)) ))=(1/2)β((1/2),n−(1/2))  Σ_(n≥1) (I/n)=Σ_(n≥1) (1/(2n)).((Γ((1/2))Γ(n−(1/2)))/(Γ(n)))=Σ(((1/2)Γ((1/2))Γ(n−(1/2)))/(Γ(n+1)))=Σ((Γ((3/2))Γ(n−(1/2)))/(Γ(n−(1/2)+(3/2))))  =Σ_(n≥1) β((3/2),n−(1/2))=^(n=1+n) Σ_(n≥0) ∫_0 ^1 t^(n+(1/2)) (1−t)^(3/2) dt  =∫_0 ^1 (√t)(1−t)^(3/2) .(1/(1−t))dt=∫_0 ^1 (√(t(1−t)))dt=β((1/2),(1/2))=(π/(sin((π/2))))=π  Σ_(n≥1) (I_n /n)=π
In=0y12dy2(1+y)n=120y121(1+y)12+112=12β(12,n12)n1In=n112n.Γ(12)Γ(n12)Γ(n)=Σ12Γ(12)Γ(n12)Γ(n+1)=ΣΓ(32)Γ(n12)Γ(n12+32)=n1β(32,n12)=n=1+nn001tn+12(1t)32dt=01t(1t)32.11tdt=01t(1t)dt=β(12,12)=πsin(π2)=πn1Inn=π
Answered by namphamduc last updated on 07/Jun/24
No need to use Beta function  I_n =∫_0 ^∞ (1/((1+x^2 )^n ))dx  ⇒S=Σ_(n=1) ^∞ (I_n /n)=∫_0 ^∞ (Σ_(n=1) ^∞ (1/(n(1+x^2 )^n )))dx=−∫_0 ^∞ ln(1−(1/(1+x^2 )))dx  =−∫_0 ^∞ ln((x^2 /(1+x^2 )))dx   { ((u=ln((x^2 /(1+x^2 ))))),((dv=dx)) :}⇒ { ((du=(2/(x(1+x^2 )))dx)),((v=x)) :}  ⇒S=(−xln((x^2 /(1+x^2 )))+2tan^(−1) (x))∣_0 ^∞ =2.(π/2)=π
NoneedtouseBetafunctionIn=01(1+x2)ndxS=n=1Inn=0(n=11n(1+x2)n)dx=0ln(111+x2)dx=0ln(x21+x2)dx{u=ln(x21+x2)dv=dx{du=2x(1+x2)dxv=xS=(xln(x21+x2)+2tan1(x))0=2.π2=π

Leave a Reply

Your email address will not be published. Required fields are marked *