Menu Close

x-3-5-2x-2-2-dx-




Question Number 208205 by efronzo1 last updated on 07/Jun/24
   ∫ (x^3 . 5^(2x^2 −2)  ) dx =?
$$\:\:\:\int\:\left({x}^{\mathrm{3}} .\:\mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} \:\right)\:{dx}\:=? \\ $$
Answered by Frix last updated on 07/Jun/24
∫x^3 5^(2x^2 −2) dx=(1/(25))∫x^3 25^x^2  dx =^(t=x^2 )    (1/(50))∫25^t tdt =^(by parts)  ((25^t t)/(100ln 5))−(1/(100ln 5))∫25^t dt=  =((25^t t)/(100ln 5))−((25^t )/(200(ln 5)^2 ))=  =((25^x^2  (2ln 5 x^2 −1))/(200(ln 5)^2 ))+C
$$\int{x}^{\mathrm{3}} \mathrm{5}^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}} {dx}=\frac{\mathrm{1}}{\mathrm{25}}\int{x}^{\mathrm{3}} \mathrm{25}^{{x}^{\mathrm{2}} } {dx}\:\overset{{t}={x}^{\mathrm{2}} } {=} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{50}}\int\mathrm{25}^{{t}} {tdt}\:\overset{\mathrm{by}\:\mathrm{parts}} {=}\:\frac{\mathrm{25}^{{t}} {t}}{\mathrm{100ln}\:\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{100ln}\:\mathrm{5}}\int\mathrm{25}^{{t}} {dt}= \\ $$$$=\frac{\mathrm{25}^{{t}} {t}}{\mathrm{100ln}\:\mathrm{5}}−\frac{\mathrm{25}^{{t}} }{\mathrm{200}\left(\mathrm{ln}\:\mathrm{5}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{25}^{{x}^{\mathrm{2}} } \left(\mathrm{2ln}\:\mathrm{5}\:{x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{200}\left(\mathrm{ln}\:\mathrm{5}\right)^{\mathrm{2}} }+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *