Question Number 208235 by efronzo1 last updated on 08/Jun/24
Answered by som(math1967) last updated on 08/Jun/24
$$\:{here}\:{f}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}{dx} \\ $$$$=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}}\:−\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}+{x}}{\mathrm{1}+{x}}{dx} \\ $$$$=\left[\mathrm{2}{ln}\left(\mathrm{1}+{x}\right)−{x}\right]_{\mathrm{2}} ^{\mathrm{4}} \\ $$$$=\mathrm{2}{ln}\mathrm{5}−\mathrm{4}−\mathrm{2}{ln}\mathrm{3}+\mathrm{2} \\ $$$$=\mathrm{2}{ln}\frac{\mathrm{5}}{\mathrm{3}}\:−\mathrm{2} \\ $$
Answered by shunmisaki007 last updated on 08/Jun/24
$$\mathrm{Let}\:{y}={f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\:\:\:{f}\left({y}\right)={x}=\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}} \\ $$$$\:\:\:{x}\left(\mathrm{1}+{y}\right)=\mathrm{1}−{y} \\ $$$$\:\:\:{x}+{xy}=\mathrm{1}−{y} \\ $$$$\:\:\:{xy}+{y}=\mathrm{1}−{x} \\ $$$$\:\:\:{y}\left(\mathrm{1}+{x}\right)=\mathrm{1}−{x} \\ $$$$\Rightarrow\:{y}={f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}} \\ $$$$\:\:\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}{f}^{−\mathrm{1}} \left({x}\right){dx}=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}{dx}=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}−{x}+\mathrm{1}−\mathrm{1}}{\mathrm{1}+{x}}{dx} \\ $$$$\:\:\:\:\:=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{2}−{x}−\mathrm{1}}{\mathrm{1}+{x}}{dx}=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{2}−\left({x}+\mathrm{1}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$\:\:\:\:\:=\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{2}}{\mathrm{1}+{x}}{dx}−\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}\frac{\mathrm{1}+{x}}{\mathrm{1}+{x}}{dx} \\ $$$$\:\:\:\:\:=\left[\mathrm{2ln}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{2}} ^{\mathrm{4}} −\left[{x}\right]_{\mathrm{2}} ^{\mathrm{4}} \\ $$$$\:\:\:\:\:=\left(\mathrm{2ln}\left(\mathrm{1}+\mathrm{4}\right)−\mathrm{2ln}\left(\mathrm{1}+\mathrm{2}\right)\right)−\left(\mathrm{4}−\mathrm{2}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left(\mathrm{ln}\left(\mathrm{5}\right)−\mathrm{ln}\left(\mathrm{3}\right)\right)−\mathrm{2} \\ $$$$\therefore\:\underset{\mathrm{2}} {\overset{\mathrm{4}} {\int}}{f}^{−\mathrm{1}} \left({x}\right){dx}=\mathrm{2ln}\left(\frac{\mathrm{5}}{\mathrm{3}}\right)−\mathrm{2}\approx−\mathrm{0}.\mathrm{987}\:\bigstar \\ $$$$\:\:\:\: \\ $$