Menu Close

Solve-for-p-q-r-p-q-r-p-2-q-2-r-2-pq-r-




Question Number 208241 by Frix last updated on 08/Jun/24
Solve for p, q, r  p+q+r=α  p^2 +q^2 +r^2 =β  pq=r
$$\mathrm{Solve}\:\mathrm{for}\:{p},\:{q},\:{r} \\ $$$${p}+{q}+{r}=\alpha \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\beta \\ $$$${pq}={r} \\ $$
Answered by mr W last updated on 08/Jun/24
p^2 +q^2 +(pq)^2 =β  (p+q)^2 +(pq)^2 −2(pq)=β  (α−pq)^2 +(pq)^2 −2(pq)=β  2(pq)^2 −2(α+1)(pq)+α^2 −β=0  ⇒pq=((α+1±(√(1+2α−α^2 +2β)))/2)=r  ⇒p+q=α−r  p, q are roots of  x^2 −(α−r)x+r=0  ⇒p, q=((α−r±(√((α−r)^2 −4r)))/2)
$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\left({pq}\right)^{\mathrm{2}} =\beta \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} +\left({pq}\right)^{\mathrm{2}} −\mathrm{2}\left({pq}\right)=\beta \\ $$$$\left(\alpha−{pq}\right)^{\mathrm{2}} +\left({pq}\right)^{\mathrm{2}} −\mathrm{2}\left({pq}\right)=\beta \\ $$$$\mathrm{2}\left({pq}\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha+\mathrm{1}\right)\left({pq}\right)+\alpha^{\mathrm{2}} −\beta=\mathrm{0} \\ $$$$\Rightarrow{pq}=\frac{\alpha+\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{2}\alpha−\alpha^{\mathrm{2}} +\mathrm{2}\beta}}{\mathrm{2}}={r} \\ $$$$\Rightarrow{p}+{q}=\alpha−{r} \\ $$$${p},\:{q}\:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{2}} −\left(\alpha−{r}\right){x}+{r}=\mathrm{0} \\ $$$$\Rightarrow{p},\:{q}=\frac{\alpha−{r}\pm\sqrt{\left(\alpha−{r}\right)^{\mathrm{2}} −\mathrm{4}{r}}}{\mathrm{2}} \\ $$
Commented by Frix last updated on 08/Jun/24
��

Leave a Reply

Your email address will not be published. Required fields are marked *