Menu Close

Question-208263




Question Number 208263 by efronzo1 last updated on 09/Jun/24
Answered by Ghisom last updated on 09/Jun/24
a=e^α  ⇒ b=e^λ a∧c=e^(2λ) a  A=log_c  a =(α/(α+2λ))  B=log_b  c =((α+2λ)/(α+λ))  C=log_a  b =((α+λ)/α)  B−A=C−B=δ ⇒  (((3α^2 +3αλ−2λ^2 )λ)/(α(α+λ)(α+2λ)))=0  λ=0 ⇒ a=b=c∧δ=1  λ=((3±(√(33)))/4)α ⇒ δ=(3/2)
$${a}=\mathrm{e}^{\alpha} \:\Rightarrow\:{b}=\mathrm{e}^{\lambda} {a}\wedge{c}=\mathrm{e}^{\mathrm{2}\lambda} {a} \\ $$$${A}=\mathrm{log}_{{c}} \:{a}\:=\frac{\alpha}{\alpha+\mathrm{2}\lambda} \\ $$$${B}=\mathrm{log}_{{b}} \:{c}\:=\frac{\alpha+\mathrm{2}\lambda}{\alpha+\lambda} \\ $$$${C}=\mathrm{log}_{{a}} \:{b}\:=\frac{\alpha+\lambda}{\alpha} \\ $$$${B}−{A}={C}−{B}=\delta\:\Rightarrow \\ $$$$\frac{\left(\mathrm{3}\alpha^{\mathrm{2}} +\mathrm{3}\alpha\lambda−\mathrm{2}\lambda^{\mathrm{2}} \right)\lambda}{\alpha\left(\alpha+\lambda\right)\left(\alpha+\mathrm{2}\lambda\right)}=\mathrm{0} \\ $$$$\lambda=\mathrm{0}\:\Rightarrow\:{a}={b}={c}\wedge\delta=\mathrm{1} \\ $$$$\lambda=\frac{\mathrm{3}\pm\sqrt{\mathrm{33}}}{\mathrm{4}}\alpha\:\Rightarrow\:\delta=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *