Menu Close

L-0-4-pi-ln-cosx-dx-




Question Number 208280 by Shrodinger last updated on 10/Jun/24
L=∫_0 ^(4/π) ln(cosx)dx
L=04πln(cosx)dx
Answered by Berbere last updated on 10/Jun/24
=∫_0 ^(π/4) ((ln(((cos(x))/(sin(x))).sin(x)cos(x))dx)/2)=(1/2)∫_0 ^(π/4) ln(cot(x))dx+(1/2)∫_0 ^(π/4) ln(((sin(2x))/2))dx  tan(x)→t;2x→t  =−(1/2)∫_0 ^1 ((ln(t))/(1+t^2 ))dt+(1/4)∫_0 ^(π/2) ln(sin(y))dy−((ln(2))/2).(π/4)  =−(1/2)∫_0 ^1 Σ_(n≥0) (−1)^n ln(t)t^(2n) dt+(1/4).−(π/2)ln(2)−((πln(2))/8)  =−(1/2)Σ_(n≥0) −(1/((2n+1)^2 ))−((πln(2))/4);G=(((−1)^n )/((2n+1)^2 ))=β(−1) Catalane constant  =(1/2)G−((πln(2))/4)
=0π4ln(cos(x)sin(x).sin(x)cos(x))dx2=120π4ln(cot(x))dx+120π4ln(sin(2x)2)dxtan(x)t;2xt=1201ln(t)1+t2dt+140π2ln(sin(y))dyln(2)2.π4=1201n0(1)nln(t)t2ndt+14.π2ln(2)πln(2)8=12n01(2n+1)2πln(2)4;G=(1)n(2n+1)2=β(1)Catalaneconstant=12Gπln(2)4
Commented by Shrodinger last updated on 11/Jun/24
thanks sir..
thankssir..
Commented by Shrodinger last updated on 11/Jun/24
Sir It is ∫_0 ^(4/π) ln(cosx)dx
SirItis04πln(cosx)dx

Leave a Reply

Your email address will not be published. Required fields are marked *