Menu Close

Question-208277




Question Number 208277 by Mastermind last updated on 10/Jun/24
Answered by Rasheed.Sindhi last updated on 10/Jun/24
 determinant ((0,0,1,1,3),(0,0,5,2,1),(1,5,2,0,0),(1,2,0,2,0),(3,1,0,0,2))   R_2 =R_2 −2R_1   = determinant ((0,0,1,1,(  3)),(0,0,3,0,(-5)),(1,5,2,0,(  0)),(1,2,0,2,(  0)),(3,1,0,0,(  2)))   R_4 =R_4 −2R_1   = determinant ((0,0,1,1,(  3)),(0,0,3,0,(-5)),(1,5,2,0,(  0)),(1,2,(-2),0,( -6)),(3,1,0,0,(  2)))   =−(1) determinant ((0,0,3,(-5)),(1,5,2,(  0)),(1,2,(-2),( -6)),(3,1,0,(  2)))   R_3 −R_2  , R_4 −3R_2   =− determinant ((0,0,3,(-5)),(1,5,2,(  0)),(0,(-3),(-4),( -6)),(0,(-14),(-6),(  2)))   =−(−1) determinant ((0,3,(-5)),((-3),(-4),( -6)),((-14),(-6),(  2)))   = determinant ((0,3,(-5)),((-3),(-4),( -6)),((-14),(-6),(  2)))   =−3 determinant (((  -3),(-6)),((-14),(  2)))−5 determinant (((-3),(-4)),((-14),(-6)))  =−3(−6−84)−5(18−56)  =−3(−90)−5(−38)  =270+190=460
$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{2}} ={R}_{\mathrm{2}} −\mathrm{2}{R}_{\mathrm{1}} \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\:\:\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{4}} ={R}_{\mathrm{4}} −\mathrm{2}{R}_{\mathrm{1}} \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\:\:\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}&{\:-\mathrm{6}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\left(\mathrm{1}\right)\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{-\mathrm{2}}&{\:-\mathrm{6}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{3}} −{R}_{\mathrm{2}} \:,\:{R}_{\mathrm{4}} −\mathrm{3}{R}_{\mathrm{2}} \\ $$$$=−\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{0}}&{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{\mathrm{0}}&{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\left(−\mathrm{1}\right)\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\mathrm{3}\begin{vmatrix}{\:\:-\mathrm{3}}&{-\mathrm{6}}\\{-\mathrm{14}}&{\:\:\mathrm{2}}\end{vmatrix}−\mathrm{5}\begin{vmatrix}{-\mathrm{3}}&{-\mathrm{4}}\\{-\mathrm{14}}&{-\mathrm{6}}\end{vmatrix} \\ $$$$=−\mathrm{3}\left(−\mathrm{6}−\mathrm{84}\right)−\mathrm{5}\left(\mathrm{18}−\mathrm{56}\right) \\ $$$$=−\mathrm{3}\left(−\mathrm{90}\right)−\mathrm{5}\left(−\mathrm{38}\right) \\ $$$$=\mathrm{270}+\mathrm{190}=\mathrm{460} \\ $$
Commented by Mastermind last updated on 10/Jun/24
Thank you so much, I really appreciate.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Answered by Rasheed.Sindhi last updated on 10/Jun/24
 determinant ((0,0,1,1,3),(0,0,5,2,1),(1,5,2,0,0),(1,2,0,2,0),(3,1,0,0,2))   R_3 −R_4  , R_5 −3R_4    = determinant ((0,0,1,(        1),3),(0,0,5,(        2),1),(0,3,2,(-2),0),(1,2,0,(        2),0),(0,(-5),0,(-6),2))    =−1 determinant ((0,1,(        1),3),(0,5,(        2),1),(3,2,(-2),0),((-5),0,(-6),2))     C_2 −C_3  ,C_4 −3C_3   0 -3 -4 -6 -5  =−1 determinant ((0,0,(        1),(      0)),(0,3,(        2),(-5)),(3,4,(-2),(   ?6)),((-5),6,(-6),(20)))      =− determinant ((0,3,(-5)),(3,4,(   ?6)),((-5),6,(20)))      =−[−3 determinant (((  3),(  6)),((-5),(20)))−5 determinant (((  3),4),((-5),6))]  =3(60+30)+5(18+20)  =270+190=460
$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{3}} −{R}_{\mathrm{4}} \:,\:{R}_{\mathrm{5}} −\mathrm{3}{R}_{\mathrm{4}} \: \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{-\mathrm{5}}&{\mathrm{0}}&{-\mathrm{6}}&{\mathrm{2}}\end{vmatrix}\:\: \\ $$$$=−\mathrm{1}\begin{vmatrix}{\mathrm{0}}&{\mathrm{1}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{5}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}\\{-\mathrm{5}}&{\mathrm{0}}&{-\mathrm{6}}&{\mathrm{2}}\end{vmatrix}\:\:\: \\ $$$${C}_{\mathrm{2}} −{C}_{\mathrm{3}} \:,{C}_{\mathrm{4}} −\mathrm{3}{C}_{\mathrm{3}} \:\:\mathrm{0}\:-\mathrm{3}\:-\mathrm{4}\:-\mathrm{6}\:-\mathrm{5} \\ $$$$=−\mathrm{1}\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{-\mathrm{5}}\\{\mathrm{3}}&{\mathrm{4}}&{-\mathrm{2}}&{\:\:\:?\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{6}}&{-\mathrm{6}}&{\mathrm{20}}\end{vmatrix}\:\:\:\: \\ $$$$=−\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{3}}&{\mathrm{4}}&{\:\:\:?\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{6}}&{\mathrm{20}}\end{vmatrix}\:\:\:\: \\ $$$$=−\left[−\mathrm{3}\begin{vmatrix}{\:\:\mathrm{3}}&{\:\:\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{20}}\end{vmatrix}−\mathrm{5}\begin{vmatrix}{\:\:\mathrm{3}}&{\mathrm{4}}\\{-\mathrm{5}}&{\mathrm{6}}\end{vmatrix}\right] \\ $$$$=\mathrm{3}\left(\mathrm{60}+\mathrm{30}\right)+\mathrm{5}\left(\mathrm{18}+\mathrm{20}\right) \\ $$$$=\mathrm{270}+\mathrm{190}=\mathrm{460} \\ $$
Commented by Mastermind last updated on 10/Jun/24
Thank you so much, I really appreciate.
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *