Question Number 208277 by Mastermind last updated on 10/Jun/24

Answered by Rasheed.Sindhi last updated on 10/Jun/24

$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{2}} ={R}_{\mathrm{2}} −\mathrm{2}{R}_{\mathrm{1}} \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\:\:\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{4}} ={R}_{\mathrm{4}} −\mathrm{2}{R}_{\mathrm{1}} \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\:\:\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}&{\:-\mathrm{6}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\left(\mathrm{1}\right)\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{-\mathrm{2}}&{\:-\mathrm{6}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{3}} −{R}_{\mathrm{2}} \:,\:{R}_{\mathrm{4}} −\mathrm{3}{R}_{\mathrm{2}} \\ $$$$=−\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\:\:\mathrm{0}}\\{\mathrm{0}}&{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{\mathrm{0}}&{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\left(−\mathrm{1}\right)\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{-\mathrm{3}}&{-\mathrm{4}}&{\:-\mathrm{6}}\\{-\mathrm{14}}&{-\mathrm{6}}&{\:\:\mathrm{2}}\end{vmatrix}\: \\ $$$$=−\mathrm{3}\begin{vmatrix}{\:\:-\mathrm{3}}&{-\mathrm{6}}\\{-\mathrm{14}}&{\:\:\mathrm{2}}\end{vmatrix}−\mathrm{5}\begin{vmatrix}{-\mathrm{3}}&{-\mathrm{4}}\\{-\mathrm{14}}&{-\mathrm{6}}\end{vmatrix} \\ $$$$=−\mathrm{3}\left(−\mathrm{6}−\mathrm{84}\right)−\mathrm{5}\left(\mathrm{18}−\mathrm{56}\right) \\ $$$$=−\mathrm{3}\left(−\mathrm{90}\right)−\mathrm{5}\left(−\mathrm{38}\right) \\ $$$$=\mathrm{270}+\mathrm{190}=\mathrm{460} \\ $$
Commented by Mastermind last updated on 10/Jun/24

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$
Answered by Rasheed.Sindhi last updated on 10/Jun/24
![determinant ((0,0,1,1,3),(0,0,5,2,1),(1,5,2,0,0),(1,2,0,2,0),(3,1,0,0,2)) R_3 −R_4 , R_5 −3R_4 = determinant ((0,0,1,( 1),3),(0,0,5,( 2),1),(0,3,2,(-2),0),(1,2,0,( 2),0),(0,(-5),0,(-6),2)) =−1 determinant ((0,1,( 1),3),(0,5,( 2),1),(3,2,(-2),0),((-5),0,(-6),2)) C_2 −C_3 ,C_4 −3C_3 0 -3 -4 -6 -5 =−1 determinant ((0,0,( 1),( 0)),(0,3,( 2),(-5)),(3,4,(-2),( ?6)),((-5),6,(-6),(20))) =− determinant ((0,3,(-5)),(3,4,( ?6)),((-5),6,(20))) =−[−3 determinant ((( 3),( 6)),((-5),(20)))−5 determinant ((( 3),4),((-5),6))] =3(60+30)+5(18+20) =270+190=460](https://www.tinkutara.com/question/Q208283.png)
$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}\end{vmatrix}\: \\ $$$${R}_{\mathrm{3}} −{R}_{\mathrm{4}} \:,\:{R}_{\mathrm{5}} −\mathrm{3}{R}_{\mathrm{4}} \: \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{5}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{0}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{-\mathrm{5}}&{\mathrm{0}}&{-\mathrm{6}}&{\mathrm{2}}\end{vmatrix}\:\: \\ $$$$=−\mathrm{1}\begin{vmatrix}{\mathrm{0}}&{\mathrm{1}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{5}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{2}}&{\mathrm{0}}\\{-\mathrm{5}}&{\mathrm{0}}&{-\mathrm{6}}&{\mathrm{2}}\end{vmatrix}\:\:\: \\ $$$${C}_{\mathrm{2}} −{C}_{\mathrm{3}} \:,{C}_{\mathrm{4}} −\mathrm{3}{C}_{\mathrm{3}} \:\:\mathrm{0}\:-\mathrm{3}\:-\mathrm{4}\:-\mathrm{6}\:-\mathrm{5} \\ $$$$=−\mathrm{1}\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\:\:\:\:\:\:\:\:\mathrm{1}}&{\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}&{\:\:\:\:\:\:\:\:\mathrm{2}}&{-\mathrm{5}}\\{\mathrm{3}}&{\mathrm{4}}&{-\mathrm{2}}&{\:\:\:?\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{6}}&{-\mathrm{6}}&{\mathrm{20}}\end{vmatrix}\:\:\:\: \\ $$$$=−\begin{vmatrix}{\mathrm{0}}&{\mathrm{3}}&{-\mathrm{5}}\\{\mathrm{3}}&{\mathrm{4}}&{\:\:\:?\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{6}}&{\mathrm{20}}\end{vmatrix}\:\:\:\: \\ $$$$=−\left[−\mathrm{3}\begin{vmatrix}{\:\:\mathrm{3}}&{\:\:\mathrm{6}}\\{-\mathrm{5}}&{\mathrm{20}}\end{vmatrix}−\mathrm{5}\begin{vmatrix}{\:\:\mathrm{3}}&{\mathrm{4}}\\{-\mathrm{5}}&{\mathrm{6}}\end{vmatrix}\right] \\ $$$$=\mathrm{3}\left(\mathrm{60}+\mathrm{30}\right)+\mathrm{5}\left(\mathrm{18}+\mathrm{20}\right) \\ $$$$=\mathrm{270}+\mathrm{190}=\mathrm{460} \\ $$
Commented by Mastermind last updated on 10/Jun/24

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$