Menu Close

Resolver-2-u-y-2-x-2-u-xe-4y-




Question Number 208303 by Simurdiera last updated on 10/Jun/24
Resolver  (∂^2 u/∂y^2 ) − x^2 u = xe^(4y)
$${Resolver} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }\:−\:{x}^{\mathrm{2}} {u}\:=\:{xe}^{\mathrm{4}{y}} \\ $$
Answered by aleks041103 last updated on 12/Jun/24
u=X(x)Y(y)  ⇒XY ′′−x^2 XY=x e^(4y)   ((Y ′′)/Y)=(x/X) (e^(4y) /Y)+x^2   left side is function of y only  right side has dependence on x  ⇒((Y ′′)/Y)=(x/X) (e^(4y) /Y)+x^2 =c=const.  Y=(1/a)e^(4y) ⇒c=16  ⇒16=((ax)/X)+x^2 ⇒X=((ax)/(16−x^2 ))  ⇒u=XY=((xe^(4y) )/(16−x^2 ))  the PDE is linear  ⇒u=((xe^(4y) )/(16−x^2 ))+w  where  (∂^2 w/∂y^2 ) − x^2 w = 0  ⇒w=f(x)e^(xy) +g(x)e^(−xy)   For Cauchy problem:  w(x,0)=w_0 (x) and (∂w/∂y)(x,0)=v_0 (x)  we can solve for f and g.  Therefore this is the general solution.  ⇒u(x,y)= ((xe^(4y) )/(16−x^2 )) + f(x)e^(xy) +g(x)e^(−xy)
$${u}={X}\left({x}\right){Y}\left({y}\right) \\ $$$$\Rightarrow{XY}\:''−{x}^{\mathrm{2}} {XY}={x}\:{e}^{\mathrm{4}{y}} \\ $$$$\frac{{Y}\:''}{{Y}}=\frac{{x}}{{X}}\:\frac{{e}^{\mathrm{4}{y}} }{{Y}}+{x}^{\mathrm{2}} \\ $$$${left}\:{side}\:{is}\:{function}\:{of}\:{y}\:{only} \\ $$$${right}\:{side}\:{has}\:{dependence}\:{on}\:{x} \\ $$$$\Rightarrow\frac{{Y}\:''}{{Y}}=\frac{{x}}{{X}}\:\frac{{e}^{\mathrm{4}{y}} }{{Y}}+{x}^{\mathrm{2}} ={c}={const}. \\ $$$${Y}=\frac{\mathrm{1}}{{a}}{e}^{\mathrm{4}{y}} \Rightarrow{c}=\mathrm{16} \\ $$$$\Rightarrow\mathrm{16}=\frac{{ax}}{{X}}+{x}^{\mathrm{2}} \Rightarrow{X}=\frac{{ax}}{\mathrm{16}−{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{u}={XY}=\frac{{xe}^{\mathrm{4}{y}} }{\mathrm{16}−{x}^{\mathrm{2}} } \\ $$$${the}\:{PDE}\:{is}\:{linear} \\ $$$$\Rightarrow{u}=\frac{{xe}^{\mathrm{4}{y}} }{\mathrm{16}−{x}^{\mathrm{2}} }+{w} \\ $$$${where} \\ $$$$\frac{\partial^{\mathrm{2}} {w}}{\partial{y}^{\mathrm{2}} }\:−\:{x}^{\mathrm{2}} {w}\:=\:\mathrm{0} \\ $$$$\Rightarrow{w}={f}\left({x}\right){e}^{{xy}} +{g}\left({x}\right){e}^{−{xy}} \\ $$$${For}\:{Cauchy}\:{problem}: \\ $$$${w}\left({x},\mathrm{0}\right)={w}_{\mathrm{0}} \left({x}\right)\:{and}\:\frac{\partial{w}}{\partial{y}}\left({x},\mathrm{0}\right)={v}_{\mathrm{0}} \left({x}\right) \\ $$$${we}\:{can}\:{solve}\:{for}\:{f}\:{and}\:{g}. \\ $$$${Therefore}\:{this}\:{is}\:{the}\:{general}\:{solution}. \\ $$$$\Rightarrow{u}\left({x},{y}\right)=\:\frac{{xe}^{\mathrm{4}{y}} }{\mathrm{16}−{x}^{\mathrm{2}} }\:+\:{f}\left({x}\right){e}^{{xy}} +{g}\left({x}\right){e}^{−{xy}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *