Menu Close

Question-208359




Question Number 208359 by alcohol last updated on 13/Jun/24
Commented by alcohol last updated on 13/Jun/24
please help
pleasehelp
Answered by Berbere last updated on 17/Jun/24
f(x)=x^n +x−1⇒f′(x)=nx^(n−1) +1≥1;f increase  f(0)=−1,f(1)=1 ∃c_n  ∣f(x_n )=0  x_n ^n +x−1=0  f_(n+1) (x_n )=x_n ^(n+1) +x_n −1≤x_n ^n +x_n −1=0  x_(n+1) >x_n ⇒x_n  cv x_n =l  if l<1⇒lim_(n→∞) l^n =0⇒l−1=0⇒l=1 absurd  ⇒l=1 since 0≤x_n ≤1  1−x_n =x_n ^n =u_n ⇒u_n →0⇒  1−x_n =x_n ^n ⇒nln(x_n )−ln(1−x_n )=0  x_n =x_n =1−u_n   nln(1−u_n )−ln(u_n )=0⇒u_n  solution of f(x)=nln(1−x)−ln(x)  u_n ∈]0,1[  f′(x)=((−n)/(1−x))−(1/x)<0  f(((ln(n))/(2n)))=nln(1−((ln(n))/(2n)))−ln(((ln(n))/(2n)))  ∼−((ln(n))/2)−ln(ln(n))+ln(2n)  =((ln(n))/2)−ln(ln(n))>0 for n enough big  f(2((ln(n))/n))=nln(1−((2ln(n))/n))−ln(((2ln(n))/n))  ∼−2ln(n)−ln(2ln(n)+ln(n)∼−ln(n)<0  for n enough big   f(((ln(n))/(2n)))>;f(((2ln(n))/n))>0 f(u_n )=0 f decrease  ⇒  ((ln(n))/(2n))<u_n <((2ln(n))/n)
f(x)=xn+x1f(x)=nxn1+11;fincreasef(0)=1,f(1)=1cnf(xn)=0xnn+x1=0fn+1(xn)=xnn+1+xn1xnn+xn1=0xn+1>xnxncvxn=lifl<1limnln=0l1=0l=1absurdl=1since0xn11xn=xnn=unun01xn=xnnnln(xn)ln(1xn)=0xn=xn=1unnln(1un)ln(un)=0unsolutionoff(x)=nln(1x)ln(x)un]0,1[f(x)=n1x1x<0f(ln(n)2n)=nln(1ln(n)2n)ln(ln(n)2n)ln(n)2ln(ln(n))+ln(2n)=ln(n)2ln(ln(n))>0fornenoughbigf(2ln(n)n)=nln(12ln(n)n)ln(2ln(n)n)2ln(n)ln(2ln(n)+ln(n)ln(n)<0fornenoughbigf(ln(n)2n)>;f(2ln(n)n)>0f(un)=0fdecreaseln(n)2n<un<2ln(n)n

Leave a Reply

Your email address will not be published. Required fields are marked *