Menu Close

g-x-lnx-2-f-x-x-25-1-3-Find-lim-x-e-f-g-x-




Question Number 208381 by hardmath last updated on 14/Jun/24
g(x) = lnx^2   f(x) = ((x + 25))^(1/3)   Find:   lim_(x→e)  (f(g(x)) = ?
$$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{lnx}^{\mathrm{2}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt[{\mathrm{3}}]{\mathrm{x}\:+\:\mathrm{25}} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\boldsymbol{\mathrm{e}}} {\mathrm{lim}}\:\left(\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}\right)\right)\:=\:?\right. \\ $$
Answered by A5T last updated on 14/Jun/24
f(g(x))=((ln(x^2 )+25))^(1/3)   ⇒lim_(x→e) f(g(x))=((ln(e^2 )+25))^(1/3) =((27))^(1/3) =3
$${f}\left({g}\left({x}\right)\right)=\sqrt[{\mathrm{3}}]{{ln}\left({x}^{\mathrm{2}} \right)+\mathrm{25}} \\ $$$$\Rightarrow\underset{{x}\rightarrow{e}} {{lim}f}\left({g}\left({x}\right)\right)=\sqrt[{\mathrm{3}}]{{ln}\left({e}^{\mathrm{2}} \right)+\mathrm{25}}=\sqrt[{\mathrm{3}}]{\mathrm{27}}=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *