Question Number 208423 by lepuissantcedricjunior last updated on 15/Jun/24
$$\:\:\:\boldsymbol{{calculons}}\: \\ $$$$\boldsymbol{{i}}=\int\int\int_{\left[\mathrm{0};\mathrm{1}\right]} \frac{\boldsymbol{{dxdydz}}}{\mathrm{1}−\boldsymbol{{xyz}}} \\ $$
Answered by Berbere last updated on 15/Jun/24
$$=\int\int\left[−\frac{\mathrm{1}}{{xy}}{ln}\left(\mathrm{1}−{xy}\right)\right]{dydx} \\ $$$${xy}={u}\Rightarrow{dy}=\frac{{du}}{{x}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{{x}} \frac{{ln}\left(\mathrm{1}−{u}\right)}{−{u}}{dudx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{Li}_{\mathrm{2}} \left({x}\right)}{{x}}{dx}={Li}_{\mathrm{3}} \left(\mathrm{1}\right)=\zeta\left(\mathrm{3}\right) \\ $$$${Li}_{{n}+\mathrm{1}} \left({x}\right)=\int_{\mathrm{0}} ^{{x}} \frac{{Li}_{{n}} \left({z}\right)}{{z}}{dz} \\ $$$${Li}_{\mathrm{2}} \left({x}\right)=−\int_{\mathrm{0}} ^{{x}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt} \\ $$$${Li}_{\mathrm{3}} \left({z}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{z}^{{n}} }{{n}^{\mathrm{3}} };\zeta\left(\mathrm{3}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$