h-a-x-e-x-ax-2-show-that-h-a-admits-a-minimum-in-R- Tinku Tara June 15, 2024 Relation and Functions 0 Comments FacebookTweetPin Question Number 208431 by alcohol last updated on 15/Jun/24 ha(x)=e−x+ax2showthathaadmitsaminimuminR Answered by mathzup last updated on 15/Jun/24 cas1a>0limx→−∞h(x)=+∞limx→+∞h(x)=+∞h′(x)=2ax−e−xlimx→−∞h′(x)=−∞limx→+∞h′(x)=+∞h(2)(x)=2a+e−x>0⇒h′eststrictementcroissantex−∞0α+∞h′(x)−∞→−1→0+∞⇒∃α/h′(α)=0x−∞α+∞h′−0+hdecrh(α)croidonchpossedeunminimunquiesth(α)=e−α+aα2h(0)=−1andh(1)=e−1+a>0⇒α∈]0,1[restaetudierlescasa<0eta=0 Answered by Frix last updated on 16/Jun/24 It′snottruefor−e2⩽a⩽0a<−e2⇒1localminplus1localmaxa=−e2⇒1saddlepoint[horizontaltangent=1pointwitha]−e2<a⩽0⇒nomin/maxatalla>0⇒1absolutemin Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: resoudre-dans-R-3-x-y-3-y-z-5-x-z-4-Next Next post: Question-208412 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.