Menu Close

h-a-x-e-x-ax-2-show-that-h-a-admits-a-minimum-in-R-




Question Number 208431 by alcohol last updated on 15/Jun/24
h_a (x) = e^(−x)  + ax^2   show that h_a  admits a minimum in R
ha(x)=ex+ax2showthathaadmitsaminimuminR
Answered by mathzup last updated on 15/Jun/24
cas 1      a>0  lim_(x→−∞) h(x)=+∞  lim_(x→+∞) h(x)=+∞  h^′ (x)=2ax−e^(−x)   lim_(x→−∞)   h^′ (x)=−∞  lim_(x→+∞)   h^′ (x)=+∞  h^((2)) (x)=2a+e^(−x) >0 ⇒h^′  est strictement croissante  x          −∞              0            α       +∞  h^′ (x)    −∞ →     −1  →   0     +∞  ⇒∃  α    /  h^′ (α)=0  x        −∞                  α                 +∞  h^′                       −         0         +  h           decr             h(α)     croi  donc h possede un minimun qui est  h(α)=e^(−α)  +aα^2   h(0)=−1 and h(1)=e^(−1) +a>0 ⇒  α ∈]0,1[  rest a etudier les cas   a<0 et a=0
cas1a>0limxh(x)=+limx+h(x)=+h(x)=2axexlimxh(x)=limx+h(x)=+h(2)(x)=2a+ex>0heststrictementcroissantex0α+h(x)10+α/h(α)=0xα+h0+hdecrh(α)croidonchpossedeunminimunquiesth(α)=eα+aα2h(0)=1andh(1)=e1+a>0α]0,1[restaetudierlescasa<0eta=0
Answered by Frix last updated on 16/Jun/24
It′s not true for −(e/2)≤a≤0  a<−(e/2) ⇒ 1 local min plus 1 local max  a=−(e/2) ⇒ 1 saddle point [ _(horizontal tangent)^(=1 point with a) ]  −(e/2)<a≤0 ⇒ no min/max at all  a>0 ⇒ 1 absolute min
Itsnottruefore2a0a<e21localminplus1localmaxa=e21saddlepoint[horizontaltangent=1pointwitha]e2<a0nomin/maxatalla>01absolutemin

Leave a Reply

Your email address will not be published. Required fields are marked *